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CALCULATION OF COMPLEX CHEMICAL EQUILIBRIA
by Frank J. Zeleznik and Sanford Gordon
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT

A comprehensive and balanced review of complex chemical equilibrium
computations is given by considering not only some of the theoretical but also
some of the pragmatic aspects of the problem. We begin by briefly surveying
some of the pertinent thermodynamic principles and use these to derive and
compare two alternate formulations of the equations governing chemical and
phase equilibria. This is followed by a discussion of some algorithms for
solving systems of nonlinear equations. We include not only a discussion of
those algorithms which have been used in equilibrium computations but also
some that have not been used but are potentially useful.

With this background, we present a historical review of some of the more
significant developments in the calculation of complex equilibria. We conclude
by giving examples of the application of thermodynamic computations to prac-
tical problems, and in this connection we point out how some common thermo-
dynamic misconceptions can cause difficulties.

INTRODUCTION

Numerical calculations of chemical equilibria have concerned chemists
and chemical engineers for a great many years; however, only rarely was it
necessary for them to consider more than a single chemical reaction. Thus,
to many individuals, chemical equilibrium was characterized by a single equi-

librium constant and equilibrium compositions could be calculated almost triv-
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ially. In a few situations, it was necessary to consider simultaneous equilib-
ria involving perhaps two or three reactions. A relatively familiar case of
such a situation is the successive ionization of polybasic acids such as the
dibasic carbonic acid, HoCO4 or the tribasic phosphoric acid, HqaPO,.

As people began to study chemical processes at more extreme tempera-
ture and pressure conditions, it soon became apparent that they could no longer
consider a small number of simultaneous equilibria. For example, to calcu-
late the flame temperature for the combustion of a hydrocarbon in air it might
be necessary to consider as many as 20 or more chemical reactions., As the
number of reactions increased, so toodid the mathematical difficulties. No
longer could the simultaneous equilibrium constant relations be solved in
closed form, even approximately. It became necessary to use either a trial
and error, or aniterative approach to obtain solutions of the system of simul-
taneous equations.

Several different approaches have been used to obtain solutions of the sys-
tem of simultaneous equations describing chemical equilibrium. Some of the
calculational methods were designed for specific problems and often took ad-
vantage of some special characteristic of the particular problem to facilitate
its solution. Other methods were intended to be multi-purpose schemes that
could, at least in principle, be applied to any chemical equilibrium problem.
Prior to the advent of computers the special purpose schemes were the most
widely used. However, as computers became more generally available the
tendency was to abandon the special methods in favor of the multi-purpose
schemes,

At the present time a predominant proportion of the computations of chem-
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ical equilibria are done with the multi-purpose schemes. Accordingly, we will
emphasize these methods in our review and will go into a considerable amount
of detail. On the other hand, only a cursory examination will be given to the
special purpose schemes. We shall begin by briefly reviewing some of the
thermodynamic principles and deriving the equations that are used in the com-
putation of chemical equilibria. This will be followed by a presentation of some
of the calculating techniques that are available for solving the nonlinear chem-
ical equilibrium equations. Having established the necessary background, we
will then be able to survey the literature and point out some of the advantages
and disadvantages of the various equilibrium computation schemes that have
been proposed. Finally we shall complete our paper by discussing the appli-
cation of equilibrium computations to typical problems.

THERMODYNAMIC FUNDAMENTALS

Let us begin our considerations of chemical equilibria by giving a brief
review of the pertinent thermodynamic fundamentals. This section will serve
a dual purpose; it will act as a reposit01:y for some necessary formulae and al-
so will introduce our notation. Those readers interested in a more detailed
exposition of the subject should consult one of the several textbooks listed in
the references 1- 9. The excellent textbooks by Callen 1, Kirkwood and
Oppenheim 5 and Wilson 9 are particularly appropriate.

FUNDAMENTAL RELATIONS

Every thermodynamic system can be completely characterized by any one
of its fundamental relations; that is, all the thermodynamic information about
a system can be derived from it. The particular fundamental relation that is

used is immaterial and is selected on the basis of convenience. For the in-
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dependent variables temperature, T, and pressure, P, the appropriate funda-
mental relation is the one expressing the Gibbs free energy, G, in terms of T,
P and the composition variables. All other thermodynamic quantities can be
obtained from G and are expressed in these same variables. It should be noted
that we will only consider pressure-volume work in our discussion. The func-
tion G is sometimes called a thermodynamic potential. I one wished to work
instead with pressure and entropy, S, as the independent variables then the
fundamental relation would express the enthalpy H in terms of P, S and the
composition variables. Since the temperature and pressure are convenient
experimental variables, the Gibbs function is probably most familiar and will
serve as the vehicle for our discussion. We will assume that several phases
can exist in our system and that each chemical species is potentially present

in each phase. We can then write our fundamental relation as
G =G(T, P,n") (1. 1)

where n{x i=12...m;a=12... p)represents the number of moles of
species 1 in the phase «. The Greek index on the mole numbers will label
the phase while the Latin index will label the chemical species. Now the Gibbs
free energy is an extensive property, proportional to the amount of material
in the system. This implies that (I.1) must be a homogeneous function of de-

gree one in nia.
o ‘
G(T, P,An;") =AG(T, P,nj") T.2)
From Euler's theorem on homogeneous functions we have immediately that

G=0) unf (1.3)
i,
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where the chemical potential p,? is defined to be

L= pd = uf(T, Pal) (L. 4
o

on;
and is homogeneous of degree zero in njﬁ ; that is, uia is an intensive quantity.
A comparison of the differential of G, for fixed T and P, calculated from
(I. 1) with that calculated from (I.3) gives the well-known Gibbs-Duhem relation-

ship 5

o, «
1,201 n, dp; =0 (I. 5)
THERMODYNAMIC EQUILIBRIUM

When the Gibbs function is used to describe the thermodynamic system, the
condition for thermodynamic equilibrium has been stated in the following manner
by Callen 1:"... the equilibrium state minimizesthe Gibbs function over the mani-
fold of states of constant temperature and pressure,..'. Thusat equilibrium G
is an extremum and therefore the variation in G, produced by the independent
variations, must vanish. Not all variations in the mole numbers nia are in-
dependent. The variations Gnia must, as a minimum, satisfy the requirement
that the total mass of each element is constant regardless of how element is
distributed among the different chemical species in the system. This might be
considered the least constrained problem. Additional types of constraints are
possible. For example, an analogous but somewhat more constrained problem
is obtained by requiring that the mass of each chemical species remains con-

stant. Such a constraint is appropriate for the study of the distribution of chem-

ical species among several phases. We will examine in some detail the mini-
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mum constraint of conservation of the element. In order to formulate these
constraints mathematically let Zi(i =1,2,...1) be the symbol for the ¢ ele-
ments that make up the thermodynamic system. These are distributed among
the various species Yia(i =1,2,...m; =12 ...p). In this notation the chem-

ical formula of a species can be written in the form
L
v TT (2, ) (1. 6)

i=1
The formula numbers aij represent the number of atoms of the ith element
in the jth species. If the system contains b? i=12,...7) gram-atoms of

element Zi then the conservation of the elements can be written as

p m
Z‘{ Zaunf‘-b°—o (=1,2,...1) (.17)
a=1 j=1

If ionization is ‘considered, then the conservation of charge can be expressed in
the same form as (I.7) where charge is assumed to be the (I + 1)St | "*element'’.
The value of b?+1 is then zero and a; 1, is the charge on the jth species.
Equation (I.7) represents I constraints on the variations ana . These are
supplemented by the non-negativity constraints nZ > 0. There are only (mp-1)
independent variations because of the constraints (I. 7). Hov?ever, all of the
ana can be considered independently variable if we introduce !¢ additional

variables Ajs the Lagrangian multipliers. Using Lagrangian multipliers A

(i=1,2,...7) the condition for equilibrium becomes

0& = E< Ekla1]>6n +E<Z/\aijnja - b?) ox; =0 (. 8)

, O



where

1

. o (o]
G=G + D)‘i<],2a ajn; - bi>

Treating the variations of n].a and Ai as independent not only gives

u]q +Z>7\iaij =0 (I.9)
i

but also (I.7) since the use of the A; permitted us to regard all of the anx as
independently variable. We could, of course, have used any other set of inde-
n
j .
effect of this change would be to replace (I.9) by a new set of equations formed

pendent variations expressible as a linear combination of the & The only
from a linear combination of the equations in (I.9).

In any case, (I.7) and either (I.9) or some linear combination of the equa-
tions of (I.9) represent a set of (! + mp) nonlinear equations that must be solved
to determine the equilibrium compositions and the Lagrangian multipliers.
However (I.9) is interesting from still another point of view. Notice that the
term involving the Lagrangian multipliers A4 is independent of the phase index
a. Thus it contains the conditions for phase equilibria; that is, the chemical
potential of a species is the same in all phases. This is precisely the condition
that leads to the well-known phase rule of thermodynamics (Kirkwood and
Oppenheim 5). Finally let us point out that although the A; were introduced as
a mathematical device, they can be given a physical interpretation. Substituting

(I.9) into (I.3) and using (I.7) we immediately obtain

G =- Ekib(.) 1. 10)
i 1
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Thus -4 represents the contribution of the element Zi to the Gibbs free
energy of the system.
CHEMICAL REACTIONS
Since, in the above formulation, the 5nja could be regarded as independent

variations only at the expense of introducing . new variables, A it would
seem that this formulation is perhaps not the most economical. In chemical
thermodynamics it has long been the practice to use independent variations
corresponding to relatively simple processes that can be written in the form
of chemical reactions. Thus, for example, we might write the reactions

j,ZOEA‘J?‘i,Y].‘"=o r=1,2...,(@mp-1) (I 11)
Because of the one-to-one correspondence between the njq and the Yja the
! relations (I.7) among the nf’ implies that we have ! relations among the
Yja . Equivalently, this means that the matrix A]q;, must be of rank (mp - ).
The A?;, are called the stoichiometric coefficients for the rth reaction and
are chosen so that the elements are conserved in each of the reactions repre-
sented by (I.11). This implies that the A?l;, must satisfy the relations

EaijA‘jxi, =0 I1.12)

i, a

Conventionally, the A‘jyi, are takentobe positive for the products \and negative for
the reactants. A concrete example of (I.11), for which the condition (I. 12) is

satisfied, is thereaction

1/2 CO4(g) + Hy(g) - 1/2 C(s) -H,0(@) = 0
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It should be pointed out that although the reactions (I. 11) may be significant
kinetically, they are superfluous thermodynamically since all the compositions
are already determined by (I.7) and (I.9). In a sense, these chemical reactions
violate the spirit of thermodynamics since they specify a mechanism, or path,
by which reactants are converted to products. As is well known, classical
thermodynamics deals only with state functions and for any thermodynamic
process it is only necessary to know the two end points of the process and not
the detailed path connecting them. The reactions (I. 11) should most properly
be regarded only as an artifice for introducing (mp - Z) independent variations,
Ggr, one for each reaction.

In order to relate the variations ("nia to the 6¢,, we proceed in the fol-
lowing manner. The change in the number of moles of Y2 produced by the

]
rth, reaction can be written

(5an")r = A‘]?‘;, 8¢, : 1. 13)

th reaction and is

The quantity gr is called the extent of reaction for the r
defined by (I. 13). The total change in Y].a is then obtained by summing (I. 13)
over all the reactions
o o- -

on, = EA -0 1.14

0’ = /AT 0 (L. 14)
It is apparent from (I. 14) that we can replace the variations éan in equation
(I. 8) with independent variations 651,. As was pointed out, thermodynamically
the chemical reactions are quite arbitrary and hence so too are the A?‘ r with

only the requirement that its rank be (mp -7). Now substituting (I. 14) into

(I. 8) and rearranging we obtain
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1
AR <\
é L a. : B _0 _
0= E A]r“] +L <; /aijAjr 08, + ./ L /2y -blJox, =0 (I.15)
i j, o i\k,B
Using (I. 12) we find that the conditions of chemical equilibrium take the form

EA‘J?‘;,MJ.“ =0 1. 16)

j, o
and also we again obtain (I.7). Because of the use of independent variations the
A have disappeared from the problem. As a matter of fact we could have ob-
tained this result directly from a variation of G without introducing the A if
we had regarded G as a function of Ep Alternately, the direct elimination of
A from (I.9) using (I.12) also gives (I.16). These equations represent the
equilibrium constant expressions for the chemical reactions (I.11). In this
equilibrium constant formulation of chemical equilibrium the compositions are
obtained by the simultaneous solutions of the set of (mp) nonlinear equations
represented by (I.7) and (I.16). In passing we might point out that the expres-
sion on the left-hand side of (I. 16) is the negative of de Donders affinity for the
rth reaction 9

Since the two formulations of the equations governing chemical equilibrium,

(I.7, I.9) and (I.7, I.16), havea common origin, their content is the same. The
only difference at this point is that the former set involves (mp + I) equations
while the latter involves only (mp) equations. This is somewhat compensated
by the fact that in the second formulation one must determine a set of stoichio-
metric coefficients A‘].Ii,. In a small system where the number of constitutents
(mp) is relatively small the determination of the A‘J.Ii, usually presents no
problem; however, when (mp) is large, it is important to have a more sys-

tematic procedure for determining the stoichiometric coefficients. Brinkley 10
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has discussed this problem in terms of the linear independence of a set of
vectors constructed from the aij' With each species YJq we can associate
a
a column vector X].

T
Y]a —— (}l]a) = (allj, a.2] g 0o .alj) (I° 17)

where the T on the column vector indicates the transpose. Not all of these
vectors will be linearly independent and, in fact, only ¢ <1 will be linearly
independent. Generally, the equality holds and only in special situations does

the inequality apply. We will henceforth assume c¢ =1. Designating the linearly

independent vegtors by [ i=1, ..., 1) we can write
y2 - C, V. =0 (1.18)
2§ =X ki =

The phase index does not appear on ij since )_r].a = Xf

must be independent of phase. Corresponding to the relationship (I. 18) we have

and therefore the ij

the independent reactions (I.11) written in the form
l
Ya—ECV -0 (1. 19)
] k1 kK '

where Ck represents the chemical formula of the species corresponding to
the independent vectors c;- The Ck are called components and need not all
be from the same phase. The ij play the role of stoichiometric coefficients.
When the indices «,j take the values corresponding to the components, the
equations (I.18) and (I. 19) are identically zero. The choice of components is
not unique and from a theoretical point of view all choices are equally good.
The chemical reactions (I. 19) can now be used to obtain a particular set of

chyi, by comparison with (I.11). Additionally the conservation of elements
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can be written in terms of the Vi Based on (I. 19) the analog to (I.6) would

be

l
v -TT (. 20

The conservation of elements would now be written as a conservation of com -

ponents

Euk.n.‘"qu‘; k=12,...7) (1. 21)

where the qlc; represents the moles of the component Ck that must be intro-
duced into the system to achieve the overall composition. The numbers qlc:

can be expressed in terms of the bﬁ and the formula numbers, a.., of the

ij’
components. The conservation relations in terms of components could be used
in the minimization of free energy. However no particular advantage is gained
since this merely replaces aij with v.. in (I.9), causes Ay be interpreted

1)
th component to the Gibb's free energy, and re-

as the contribution of the i
places b;’ with q;’ in (I.10). The conditions of chemical equilibrium (I. 16)
corresponding to the reactions (I. 19), can be written in the dimensionless form

l

1 o _
k=1

where the My are the chemical potentials of the components.

The formulation of the equations for determining equilibrium compositions
assumed that the thermodynamic state was specified by assigning the temper-
ature and pressure. That is, in addition to either the set of equations ((I.7),

(1.9)) or ((I.7), (I. 16)) we had the pair of trivial equations
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0 (1. 23)

d
0
g

where To’ and P0 are constants, However any two thermodynamic state
functions could have been used for the same purpose. For example, to cal-
culate the flame temperature for a constant pressure combustion (I.23) would
be replaced by
o
H(T,P,n;) =H
1 ° (I. 24)
P=P
o
where H is the enthalpy and H o is a constant equal to the enthalpy of the
reactants. For an isentropic or constant entropy process the state may be

specified as

S(T, P,n") = 8
P=P,

(1. 25)

In general, we require any two equations involving T, P, and n{x to specify
the state. The particular ones that are used are largely a matter of conven-
ience.

Often chemical equilibrium problems occur that do not require the gener -
ality of the minimum constraint problem just discussed. Typical of such prob-
lems is the class of problems related tothe distribution of chemical species
among several phases. A simple and familiar example of such solvent extrac-
tion problems is the distribution of iodine between water and carbon tetra-
chloride. An example with physiological importance is the distribution of

chemicals between the interior of the red blood cells and the blood plasmall'lz,
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Problems of this kind are all characterized by the fact that no ''chem-
ical reactions'' take place; that is, the total amount of each species remains
constant. Additionally, we may wish to take into account the existence of actual
or imaginary semi-permeable membranes., Thus in our water-carbon
tetrachloride-iodine example we can imagine the water phase to be separated
from the carbon-tetrachloride phase by a membrane that is permeable only to
iodine. This is a permissible assumption because of the small mutual solu-
bility of water and carbon-tetrachloride. For the purpose of formulating the

equilibrium equations let us suppose that each phase is surrounded by a semi-
th

permeable membrane that is permeable to all species except the m™, Then
our constraining equations are
p
;;n.“_b" @=12..., m-1)
= IR
a o
no=c. (x=1,2...p) (1. 26)

th

where b? now represents the total moles of the i species introduced into

the system and cf:l represents the number of moles of mth species introduced

into the ath

phase. Additional non-transferable species could be introduced
without any essential complication. The chief difference between the reaction
equilibria discussed previously and phase equilibria is the larger number of
components or independent species. Each of the first m - 1 species is now

th

a component while the m™ species furnishes p additional components. The

condition for equilibrium now becomes



m-1,p p
+ (y.rc:1 +22)6n2 |+ E( » nlq - b;)> oA + (nf:1 - cgl)éhgl =0
i o

Therefore we obtain

pien =0 i=12,..m-La=12,...p
I.27)

and in addition we also obtain the constraining equations (I. 26). The equations
(I.27), together with (I.26), can be used to calculate the equilibrium composi-
tions. It should be noted that here too the Lagrangian multipliers could be
eliminated to reduce the number of equations and obtain the equations corre-
sponding to the ''equilibrium constant’' formulation of the problem.
THERMODYNAMIC DERIVATIVES

Principally we have relied on the axioms of thermodynamics and our man-
ipulations to this point have been quite general. There is still one more topic
that we can discuss without introducing simplifying assumptions. In addition
to the equilibrium compositions and the thermodynamic functions such as
enthalpy and entropy one often would like to have the first derivatives of these
functions. Fortunately it turns out that all first derivatives can be expressed
in terms of three of them. For example, using the so-called Bridgman tables
as tabulated by Glasstone 4, all the derivatives can be expressed in terms of

Cp= 8H/ 3T, dV/8T and 0V/oP. In comparison with the determination of
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equilibrium compositions the evaluation of these three derivatives is almost
trivial once the equilibrium compositions have been determined. The reason
for this is that the calculation of these derivatives involves the solution of a
set of linear equations whereas equilibrium compositions can only be obtained
by solving a set of nonlinear equations. The enthalpy and volume of the sys-

tem can be written as

H=G+T8=(1-T-2\G - > fH?‘nf":EH“ (1. 28)
0T : 11y
i, o
I G 1. 29)

where Hf‘ = oH/ anf’ and V. = 9V/ an are the partial molar enthalpies and
volumes respectively and where H EH n1 and V% DV?nia are the
i

enthalpy and volume of the ozth

phase. Equat1on (I. 29) can be regarded as the
equation of state for the system since it expresses the volume in terms of the
temperature, pressure and composition. The differentiation of these expres-

sions gives

oo Dot Dur T
c¢ 1 1. 30)
P bt
av¥® on?
ﬂ=§:_—1 .°‘+E Ve L (I 31)
oT o oT ! oT
o a
BV on.
v E : E : i
-a—E: n? + V:y (I 32)
ia OP o oP

where we used the fact that Hia and V{I are homogeneous of degree zero in
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n].ﬁ .- In each of these three expressions the second term represents the effect
of composition changes produced by changes in the system temperature or
pressure. To evaluate the three derivatives (I. 30), (I. 31), (I. 32) one must know
8n{1 /oT and anf‘/ oP. These can be obtained by solving the set of linear equa-
tions obtained by differentiation from either the set of equations ((I. 7), (I. 9)), or
((I. 7),(I. 16)) or perhaps the set ((I. 26),(I. 27)). Thus from the set ((I. 7),(I. 9)) we

obtain for the temperature derivatives

anf s
uf’ﬁ_k +) ,—1a. -8% (I. 33)

Bk IEer Hor M

E?nfI
aik —=0
oT

B,k
where
af _ Ba_ .2 B. «a
Bk = Pkj = 0 G/ankanj
and where

a _ o
Sj = as/an]

is the partial molar entropy. Similarly the derivatives with respect to pres-

sure are obtained by solving

(I. 34)




18
The Lagrangian multipliers A; were given a physical interpretation by (I. 10).
An analogous interpretation can be given to their temperature and pressure

B

derivatives. Recalling that ,uf‘ is homogeneous of degree zero in nj we

have from Euler's theorem on homogeneous functions

En]?‘u]?‘ﬁ =0 (1. 35)
a,]

This may be regarded as a variant of the Gibbs-Duhem relation (I.5). Multi-

plying the first members of both (I. 33) and (I. 34) by nja and summing over

o,j gives
N,
E__l b =8 (1. 36)
~/ 9T
1
N,
b = -V
7 oP

Alternately these relations could have been obtained directly from (I. 10) by
differentiation.
THE FORM OF THE GIBBS FREE ENERGY _

Some pragmatic considerations permit us to make a considerable simpli-
fication not only in equations (I.33) and (I. 34) that are used for calculating
derivatives but also in all thermodynamic relations. To accomplish this sim-
plification we will make our first, albeit very minor, assumption. We shall
assume that each phase contributes additively to the Gibbs free energy or,

equivalently, that we are neglecting all interactions among the phases

G = EG"‘(T, P,n]) (1. 37)
a
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This is a good assumption so long as the phases are not finely dispersed in
one another. Henceforth all our calculations will be within the framework of
B

the assumption (I.37). This assumption makes the matrix “(jxk the direct

sum of submatrices corresponding to each of the phases.

ucjxﬁ - 598 p,]ﬁﬁ (I. 38)

Some of our subsequent discussions will be facilitated if we have some
idea of the structure of the chemical potential. Therefore, we will briefly
look at the functional form of the chemical potential. A much more detailed
presentation is available in the text by Kirkwood and Oppenheim 5, The chem-

th

ical potential for the i~ species inthe ath phase can generally be written

in the form

a_—a a
By =T +Ap, (I. 39)

where ﬁla represents the contribution from ideal behavior and Au? represents
the contribution from non-ideality. The quantity Ap.ia is usually called the
excess chemical potential and often must be obtained from experimental mea-

surements 2, 6'7.

In some cases it can be estimated theoretically as, for

example, inthe case on non-ideal gases obeying a virial equation of state 13 or
in the case of Debye-Huckel plasmas .14. The ideal chemical potential, ﬁia ,is
characterized by an extremely simple concentration dependence, the logarithm

of the mole fraction

—0
My (nj , T, P) ='Ouia(T, P)+RT In (nia/na) (I. 40)

In this equation Ouf‘ is an arbitrarily selected reference value for the chemical
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th

potential of the ith species in the a™ phase; n? represents the total num-

th

ber of moles in the @ phase and is defined by

n® EEni" (1. 41)
i

The reference values of the chemical potentials for the gaseous phase (a = 1)
are generally taken to be the chemical potentials of the pure species considered

as ideal gases at a temperature T and a pressure P

°u(T,P) = *p{(T) + RT In P (I 42)

th

Here *uil (T) is the ideal gas chemical potential of the i species at zero

pressure. This is a convenient choice since *uil can be calculated from
spectroscopic constants by evaluating the canonical partition function of sta-
tistical thermodynamics. Calculations of this type have been performed for
many species, and the results are available in convenient tabulations '15,

16 are also readily available to perform additional cal-

Computer programs
culations as new or revised spectroscopic data become available. The refer-
ence value of the chemical potential for condensed phases is sometimes chosen
to be the chemical potential of the pure species at the same temperature and
pressure; however, other choices can be made and these are discussed by
Kirkwood and Oppenheim 5. To generate the usual equilibrium constant re-
lations from the chemical potential we need only apply (I.39) and (I. 40) to the
chemical reactions (I. 19) by substituting into the equilibrium relations (I.22).

We will simplify the notation by assuming that we are only interested in the

gaseous phase and then suppress the index «. This gives
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(nj/n)

-K AK (G =1+1,...m) (1. 43)

l
[ | @ /m) "k
k=1

where we've assumed the first ! species were chosen as components. Here

I%(T, P) is the usual mole fraction equilibrium constant given by

In K. E-..L OIJ'J -

) .
. = .. I.44
j RT H i Vkj G=t+1,...m) (1. 44)

N
(=Y

while AK]. (T, P, nia) has a corresponding definition in terms of the deviation

from ideality A My

l
_ 1 -
In AK; = - fap, -;Aukvkj G=1+1,...m) (L. 45)

NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

In principle, the problem of chemical equilibrium has now been solved. In
practice, a great deal remains undone. For example, we must still obtain, from
experiment or theory, the dependence of the chemical potential, uf‘ , on the tem-
perature, pressure and composition variables. This aspect of the problem will
not be considered and we will assume uia is known in subsequent portions of the
paper. Perhaps the problem that causes the greatest practical difficulty is the
solution of the nonlinear equations that describe equilibrium. In general, these
equations cannot be solved in closed form but must be solved numerically by

the application of some iteration scheme. The solution of a system .of non-
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linear equations is not a problem that is unique to thermodynamics but, on
the contrary, it is a problem that occurs in all areas of science and engine-
ering. Asaresult, theliterature of numerical analysis contains a number of
techniques that can be employed to effect a solution. We shall describe a few
of these methods; however, we shall not go into their derivation nor shall we
give any detailed discussion of the numerical aspects of these methods. Our
primary concern is to briefly present some of the methods that have been suc-
cessfully used for equilibrium computations in the past and a few others that
potentially might be used for this purpose in the future.

The thermodynamic notation of the preceding section is not well suited to
a discussion of methods for solving systems of nonlinear equations. In this
section we shall use the more concise notation of matrix algebra. Thus, for

example, the set of equations ((I.7), (I. 9) will be written as

1=1®) =0 (IL. 1)

where i and x are real, N-dimensional column vectors and x represents
the N independent variables. In our case x would stand for the composi-
tion variables and possibly the Lagrangian multipliers, the temperature and
pressure. Broadly speaking, the techniques for solving nonlinear equations

17. These categories

have been divided into two categories by Householder
are (1) the functional iteration methods and (2) the descent methods. The func-

tional iteration reduces the problem of solving a system of nonlinear equations
to the problem of solving an infinite sequence of linear equations. The descent
methods reduce the problem to solving an infinite sequence of single, generally

nonlinear, equations. We first turn our attention to the functional iterations.
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FUNCTIONAL ITERATIONS
Let x* represent the solution of (II. 1); that is, f(x*) = 0. Then the

functional iteration is characterized by a vector function E(E) such that
g(x*) = x* (L. 2)

In terms of this function and some initial estimate, X, for x* we can define

a sequence of vectors Xy by the formula

Xe+1 = 8&Xy) (IL. 3)

i X, is sufficiently close to x* this sequence will converge to X* .17.

though convergence is thus guaranteed, it is often difficult to obtain an initial

Al-

estimate that is sufficiently close. This difficulty is common to all functional
iterations.

The various functional iterations differ from one another by the choice of
g(g). Perhaps the most widely used iteration of this type is the Newton or

Newton-Raphson iteration. In this iteration the function g(x) is given by the

formula

g®) = x - I 1@ t@) (IL. 4)

Here J (§) is the Jacobian matrix, that is, the matrix formed from the partial

derivatives of i

g_:

1=

The equations (II. 3) and (II. 4) can be combined into
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T &, 1 - %) = - 1) (IL. 5)

from which it is apparent that the iteration is obtained by truncating the Taylor
expansion of f ({) after the first derivative. Although the iteration will converge
for a sufficiently good estimate, the method has some practical difficulties. Not
only must one obtain a sufficiently good estimate, which in itself might present a
considerable problem, but also at each stage of the iteration the Jacobian J
must be nonsingular., Additionally, the repeated evaluation of the Jacobian and
its inverse will require a considerable amount of computation time if the number
of equations, N, is large. It is possible to somewhat compensate for this last
difficulty by employing a modified form of Newton's iteration 17‘1.8. In this
form of the iteration the Jacobian is not re-evaluated for each iteration but is

fixed at its initial value.
gx) =x - {'l(xo)i(g) (II. 6)

As a practical matter this form of the iteration should probably only be used
in the later stages of a calculation.

Newton's method presupposes that the functional form of f(x) is known
since one must be able to calculate the Jacobian. When the functions f(x) are
so complex that it becomes impractical to differentiate them or when expres-
sions for the functions andnotknown, then Newton's iteration cannot be used.
The latter situation can arise in thermodynamics when the chemical potential
is only available in tabular form. In such a case, it is possible to use a gener-

19-20 which is an example of the so-called multipoint

21

alized secant method

iterative methods whose convergence has been discussed by Tornheim
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The multipoint iterative methods are characterized by the fact that no deriv-
atives are required in the evaluation of g(x). The generalized secant method
is, in effect, Newton's method with an approximate Jacobian. If x, is the
current estimate for x* then an approximate Jacobian can be evaluated with
the aid of N auxiliary points Xiei (i-1,2,...N) in the vicinity of X by the

formula

I(x,) ~ Afy [a%,]1 (IL.7)

where the matrices A_fk and Axl are the matrices whose columns are formed

from the column vectors £ and X.

Afy =(£(’_‘k1) - 1), £3yep) - 105), -, B - -f-(l‘k))

(11. 8)
Axy = B1 - Fe Kp Koo v - XY
Thus the generalized secant method is defined by the function
gx) =x - (Ax)(aD™! £x) 1. 9)

where the indices on the matrices Ax and Af have been suppressed. This
method has the advantage that no derivatives of f(x) need be calculated; how-
ever, this means that when the iteration converges, we have only an approximate
J (§*). Since the Jacobian is needed to calculate the thermodynamic first deriv-
atives by means of (I.30)-(I. 34) this means that only approximate values of these
derivatives can be obtained.

The last method of the functional iteration type is the method of successive

substitution 22. It is based on being able to write f(x) in the form

fx) =x - g(x)
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Thus the function g(x) is defined to be
gx) =x - £(x) (IL. 10)

Thus, in relation to Newton's method, the Jacobian is here taken to be the unit
matrix.
DESCENT METHODS
The solution of thermodynamic equilibrium problems can be regarded

either as the solution of a system of nonlinear equations or, as pointed out
in the comment following (I. 16), as the direct minization of the Gibbs free en-
ergy G. Inthermodynamics the nonlinear equations themselves arise from the
constrained minimization of G. Thus in thermodynamics there is a very direct
connection between minimization and the solution of a system of equations. In
fact the solution of any system of nonlinear equations can be regarded as the
location of the minimum of some function y(x). If the equations (II. 1) arise
from the minimization of y then

f(x) = ¥ (I 11)

== T
and the connection is immediately apparent. When the functions { (5) are ob-

tained in some other way, then we can always define a suitable function ¢ by
w(x) = 11 Tms (II. 12)

= o= ==
where iT is the transpose of f and M is any real, positive definite matrix.

Because M is positive definite the function Y(x), as defined by (II. 12), is

always positive and vanishes only when { itself vanishes. This, in fact, is
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the definition of a positive definite matrix. The simplest choice for M would
be the unit matrix, in which case ¥(X) is proportional to the sum of the
squares of the components of f and is a measure of the error. In the following
discussion zp(§) will represent the objective function to be minimized and
could be either the Gibbs function regarded as a function of the £. or the
equivalent of (II. 12).

23 We shall

A review of minimization techniques has been given by Spang
confine our attention to only a few of the many possibilities. All of the methods
that we consider will generate a sequence, Xyer of approximations to the min-

imum, x* by the formula

X = X + A, (I1. 13)

The vector Uy is arbitrary except that it must not lie in the surface Y(x) =
constant at the point Xy It specifies a direction of descent while the param -
eter A determines the size of the step. The methods under consideration dif-

fer in the choice of L however, they all essentially determine A by the re-

quirement that the one-variable function

wl(h) = zp(x_k + M.lk) (I1. 14)

be a minimum. This is equivalent to determining A by solving the equation

T oy
u =0 (IL. 15)
& 0x

L R

where the gradient ay/ dx is the column vector whose components are the par -
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tial derivatives of ¢ with respect to the components of x. In principle this
gives the optimum choice of A. In practice, however, it is often advantageous
to use an approximate value for A rather than to devote an excessive amount

17

of time to a search for the optimum value. Thus Householder suggests

determining an approximate A by one step of Newton's method applied to (II. 15)

with an initial estimate of A = 0. Spang 2°

suggests some other possibilities.
One should also recognize the possibility that an approximate value of A might
be obtained empirically based on experience with related systems of equations.
There are many possibilities for the choice of a direction vector L For
example, all of the functional iterations discussed previously could be used to

supply a direction. Thus from Newton's method (II. 4) we could take

w=-3" (IL. 16)

to obtain the descent version of Newton's method. Taking u from the method

of successive substitutions (II. 10) gives

u=-f | (I1. 17)
In general a large number of choices of this type can be written in the form

u = - Bf (I1. 18)

where B is some matrix. This form even encompasses the so-called gradient
methods where u is related to oy/ ox for either f is already the gradient

(I 11) or else from (I 12) dy/ox =JT

Mf . In particular the method of steep-

est descent is given by the choice

u=2¥ (IL. 19)
S
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Perhaps the simplest choice of a descent direction is to take u along one
of the coordinate lines. If one selects the jth coordinate line, it then follows
from (II. 15) that A is determined so as to make the jth component of the
gradient equal to zero by changing only the jth coordinate. This method of
operation is known as a univariate or relaxation method. The choice of co-
ordinate lines can be made in a number of ways. For example, they might be
taken in sequence or perhaps they might be chosen so as to reduce the largest
component of the gradient to zero.

As the final technique for solving systems of nonlinear equations, we will
briefly consider a method that is basically a descent method but incorporates
some of the features of the multipoint iterations. It possesses the advantage,
like the multipoint iterations, of not requiring the calculation of a Jacobian but
unlike these methods it gives the correct Jacobian when the iteration converges.
Because of these two properties, it should have a considerable utility in thermo-
dynamic calculations. This type of iteration was first proposed by Davidon 24
and was subsequently refined by Fletcher and Powell 25. Somewhat related

26, and Broyden 27. A numerical
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algorithms were later suggested by Barnes
comparison of some of these methods was made by Rosen The calculation
method uses a direction of descent given by (II. 18). For the initial iteration
the choice of the matrix B is quite arbitrary; however, the matrix for sub-
sequent iterations is obtained by continually modifying the initial choice so
that at convergence the matrix becomes the Jacobian,

PERTURBATION CALCULATIONS

The foregoing discussion of techniques for solving systems of equations

has, of necessity, been somewhat brief. However we must caution the reader
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that although, in theory, convergence can be demonstrated for these algorithms,
in practice they can encounter convergence difficulties even for relatively sim-
ple.problems. A few interesting examples of simple but ''difficult'' problems
are given by Turner 29. Difficult problems can be solved with a sufficiently
good estimate. The problem one must then consider is how to find a good esti-
mate. Perhaps if one knew the solution to a related problem this solution might
be used as an initial estimate. This is basically the notion behind perturbation
theory. Because of the wide class of thermodynamic equilibrium problems that
can now be solved routinely, the potential for the application of perturbation
theory clearly exists. To describe this procedure we assume that we have a
solvable problem that can be continuously deformed into the actual problem and
that in this deformation process the solution of the solvable problem goes con-
tinuously into the solution of the actual problem. Thus we consider a system of

parameter dependent equations
fx;€) =0 (II. 20)

The particular method of parameterization will be left unspecified;, however,

we will assume that the continuous parameter ¢ is so chosen that

1(x;0) =1°(x) (IL. 21)
corresponds to the solvable problem and

1(x;1) =1(x) (IL. 22)

corresponds to the actual problem. Since the solution x* is assumed to be

a continuous function of ¢, we can write
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X* = x*(¢) (II. 23)

A Taylor expansion of (II. 23) gives
dx* 1 dzx* 9
x*(€ + A€) = X*(e) + — Ae+=— (Ae) +... (I1. 24)

de 2 dE2

i §*(e) is known and the derivatives appearing on the right-hand side of

(II. 24) can be evaluated, then (II.24) can be used to provide an initial estimate
for the solution of f(x; € + A€). This initial estimate can then be refined by
any one of the iterations described previously. The required derivatives can
be evaluated. For example, by differentiation of (II. 20) with respect to ¢

we obtain

- —_t+—=0 (IL. 25)

Solving this linear equation we obtain

dx* 1 of

— = -J " (x*(e); €) = (x*(¢); €) : (II. 26)
de - o€

Higher derivatives can be obtained by further differentiation of (II. 25) with

respect to €. The actual number of terms that must be used in (II. 24) depends

on the nature of the equations being solved and on the size of the increment Ae.

For a sufficiently small increment, it should be possible to use only x*(e). A

technique similar to the discussion given above was described by Freudenstein

and Roth 20,
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LITERATURE SURVEY

All the information that is necessary for an understanding of equilibrium
computations hasbeen summarized in the preceeding portions of this paper.
We could now carry out a perfunctory literature survey merely by pointing out
that a given author calculated equilibrium compositions by combining a partic-
ular set of thermodynamic equations with a certain numerical technique. How-
ever, this procedure admits only a relatively small number of different com-
binations, a number considerably smaller than the number of papers cited in the
reference list of this review. The inescapable conclusion is that many of these
papers must be merely minor variations on a major theme. This is true, but
it is equally true that it is just this fine structure that converts a theoretical
method into a practical and workable one. There is no pat answer to the ques-
tion of what constitutes a practical and workable method. Obviously, the
method should be reliable and capable of giving the correct answers when
properly implemented. It seems to us that it is the implementation that ul-
timately decides whether or not a method is to be considered acceptable. A
technique that is excellent for manual computations might be completely unsuited
to machine calculation. Similarly, a very general method designed for appli-
cation to a wide class of equilibrium problems can be expected to be inferior to
a method tailored for a specific problem when both are applied to the same
problem. As an extreme example of this we could cite the application of an
iterative method to the simple problem of the dissociation of an ideal diatomic
gas for which a closed form solution exists. Whenever discussing specific
methods we shall try to point out their advantages and disadvantages in an at-

tempt to delineate their appropriate area of application.
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We shall try to avoid a discussion of computer programs while looking at
the various methods of calculation. But because of the availability and wide
spread use of computers, we should mention some points that are pertinent to
the philosophy of writing computer programs for chemical equilibrium com-
putations. The kind of program that one writes is largely influenced by the
intended application. Let us suppose that we are faced with the problem of
doing extensive calculations on a particular chemical system within relatively
narrow ranges of the independent parameters and further that the equilibrium
calculations are a significant part of the total computational effort. In such
a situation it would be judicious to write an equilibrium computation program
that would minimize the computation time. This means that we would write a
program tailored to the specific problem in which we would take advantage of
all the available information, including initial estimates of composition, and in
addition would perform algebraically, rather than numerically, as many of the
mathematical operations as is possible. On the other hand, if we had the prob-
lem of doing calculations on a wide variety of chemical systems with broad
ranges in the independent parameters, it would be advantageous to write a
very flexible program with no requirements for initial estimates, built-in safe-
guards to assure numerical convergence, simplified input, and a large amount
of internal bookkeeping ability. This approach possesses the advantage that
one need write and debug only one computer program that is then instantly
available for a broad range of problems. It also has the disadvantage that the
computation time for a given chemical system will be somwhat longer than
that required by a well-written specific program for the same system. We

ourselves have written a broadly disseminated program of the general vari-
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33 should be consulted as an

ety 31-32 e report by Erickson, et. al.
example of the kind of time reduction that is possible with a very specific
program. This completes our acknowledgment of the existence of compu-
ters and, at least for the balance of this section, we shall try to ignore them.
EQUILIBRIUM CONSTANT ME THODS

The early equilibrium calculations were invariably based on the equili-
brium constant formulation of the thermodynamic equation (I. 43) and were
generally carried out for gas phase equilibria. Usually the effects of non-
ideality were neglected by setting AK]. equal to unity. Additionally, because
the moles, n,, appeared in the equilibrium constant not only individually but
in the combination n = Zn,, it became convenient to regard n as another
independent variable. This in turn required that the defining equation for n
(I. 41) be added to (I.21) and (I. 43) to form the set of equations determining
equilibrium conditions for a given temperature and pressure. Because the
calculations were done manually, there was an emphasis on performing an
algebraic reduction of variables before attempting a numerical solution. The
chemical reactions and the associated equilibrium relations were not written
in the systematic manner (I.19) and (I. 43) but were written in a manner that
reflected the authors choice of the important equilibria. We will cite only a

34

few of the many examples of this method of operation. Traustel *°, for ex-

ample, reduced the equations for the gaseous CHON (carbon, hydrogen,

oxygen and nitrogen) system to two equations in two unknowns and then solved

these by a Newton-Raphson iteration (II. 4). Similarly, Huff and Calvert 35

reduced the equations for the same system to two working equations but then

36

used a graphical method of solution. Doneganand Farber “~, working with
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the HO system, solved their two working equations by a special purpose
iteration. The iteration was based on an empirical relationship between the
estimate for one of the variables and the residual in one of the equations.
Martinez and Elverum 37 considered the six element system CHONF plus
one other halogen. They succeeded in reducing the equations for this sys-
tem to two quadratics. These quadratics were solved simultaneously by
essentially the method of successive substitutions (II. 10) in terms of an as-
sumed value for a parameter that appeared in both equations. Like Huff and
Calvert, a graphical technique was used by Sachsel, Mantis and Bell 38 to
evaluate equilibria in the HOBAI gystem,

The use of equilibrium constants has persisted through the years; how-
ever, with the introduction of the digital computer the preoccupation with

actual algebraic reduction waned. Thus, for example, both Goldwasser 39-

40 41-42  sea equilibrium constants but made no attempt at an

and Villars
algebraic reduction of variables. In both cases the method of solution was
the relaxation method with £, the extent of reaction, chosen as the inde-
pendent variables, The function y of (II. 12) that was being minimized was
essentially the sum of the squares of the equilibrium relations (I.22). Villars
solved the equation corresponding to (II. 15) exactly while Goldwasser suggest-
ed using a one term Newton-Raphson approximation.

At a relatively early stage in the history of equilibrium computations, it
became apparent that the system of equations could be put into a form that was
suitable for solution by the method of successive substitutions. One way to

obtain such a form is to work in terms of mole fractions. We will illustrate

this for ideal, gaseous phase equilibria. The logarithms of the equilibrium
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constants (I. 43) are already in an appropriate form

/A
ln(n]./n) - 2;; Vi ln(nk/n) -In Kj =0 G=1+1,...m) (II. 1)

The conservation equations (I.21) and the defining equation for n (I.41) can
easily be rewritten as

m o

E A
ij - e— Vlj (nj/n) "1 = 0 (k = 2, 3, ) l) (III. 2)
j=1 a3

m
E(nj/n) -1=0
=1

Now it can be observed that (III. 1) expresses all constituents in terms of the
components while (I1l. 2), because it is linear, can easily be solved for the mole
fractions of the components in terms of the constituents. This is precisely
what is required to apply the method of successive substitutions. Because of
the form of (III. 1) the iteration requires initial estimates only for the com-
ponent mole fractions in contrast to the usual situation which requires esti-
mates for all the variables. This, basically, is the iteration proposed by
Krieger and White 43.

The fact that the equations for determining chemical equilibrium can be
written in the form (III. 1) and (IIL. 2) has been used by other people, however

44 regard

not with the successive substitutions iteration. Hilsenrath et. al.
(II. 1) as providing the means for effectively eliminating the constituent mole

fractions although no actual algebraic reduction of variables is performed.




37

Their iteration formula for the moles of components can be written for the jth

iteration as

_ o
nd*D) - nl) (qk(j)qﬁnl({]) k=1,2,...1) (I1I. 3)
U

where €, are empirically determined numbers between zero and one and where

qlg) is defined by
qg)=2 ”kini(j) k=1,2,...1) (1. 4)

They chose as components the atomic species (ij = ak].). This can be re-
garded as a descent iteration because of its similarity to (II. 13). The direc-
tion of descent is given by (II. 18) and B is chosen as diagonal matrix whose
elements are eknl({j )/ ql({j). The numbers € not only play the role of A in
(IT. 13) but also partially determine the descent direction. Since the direction
and magnitude of the step are, in part, determined empirically, no function

5 employs a somewhat related iteration in the

¥ need be specified. Scully 4
sense that successive approximations are also generated by a formula akin to
(I1.13). It is, however, a relaxation process since only one component is al-
tered at a time rather than altering all of them simultaneously as is done by
Hilsenrath. Scully determines the step size empirically.

Algebraic reduction has not disappeared totally from the equilibrium com-

33 have revived the method in an

putations scene. Recently Erickson et, al.
attempt to devise rapid, special purpose computer programs. They have dem-

onstrated that, in principle, it is possible to reduce any ideal gas calculation
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to the problem of finding the appropriate root of a high order polynomial in
one variable. They acknowledge that, in practice, the complete reduction is
well-nigh impossible in a large problem. In relatively simple problems with
only a_few species the reduction can be carried out, and the resulting poly-
nomial can be treated, for example, by the Newton-Raphson method. Apart
from the practical difficulties of generating an explicit expression for the
polynomial from the chemical equilibrium equations, this method is beset
with severe numerical problems. Wilkinson 46 points out that the roots of
polynomials can be extremely sensitive to relatively small errors in the poly-
nomial coefficients and, in fact, the computed roots may bear no relationship
to the actual roots. This is compounded by the fact that in order to determine
the equilibrium composition one must find the appropriate root among the many
false roots that have been introduced while effecting the reduction to polynomial
form. Thus in all but the relatively simple equilibrium problems this method
has little to recommend it.

Although all of the methods of calculation that we have discussed to this
point have assumed that the system was ideal, the effects of non-ideality can
be easily incorporated using the perturbation technique. Thus we would de-

fine a parameter dependent equilibrium constant

lngﬂ.(e)zanj-elnAKj G=1+1,...m) (I11. 5)

where € is the perturbation parameter of equations (II. 20) to (II. 26).
The schemes that we have just discussed are, in principle, applicable to
any problem., In practice they are best suited to specific problems where one

can take advantage of the idiosyncrasies of a specific system. The first for-
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mulation in a notation that was suitable for a general problem was given by

47'49. His procedure was to apply the Newton-Raphson iteration to

Brinkley
(I.21), (I. 22), (I. 41) with the assumption that the thermodynamic state was
specified by assigning the temperature and pressure (I.23). Shortly afterward
Huff and co-workers 50 extended it so that the thermodynamic state could be
specified in terms of any two thermodynamic variables and also suggested some
minor changes which had important significance for the application of the meth-
od. The combination of these two techniques was widely applied by many

13,32, 51'65. The similarity of the Brinkley and Huff iterations per-

people
mits us to discuss both of them simultaneously. To do this we will have to
deviate slightly from their original presentations, but our changes will not al-
ter the significant aspects of the method.

Our presentation of the Brinkley-Huff method will assume that the thermo-
dynamic state is being specified by assigning the pressure and enthalpy. That
is, we will be using equations (I.21), (I.22) and (I.24). In addition, as we've
already pointed out, the quantities n% appear directly in the ideal chemical
potential. For this reason it is convenient, but not necessary, to regard the
n% as additional variables that are related to the nia by (I. 41) rather than to
regard (I. 41) as the defining equation for the n®. This ad hoc introduction of
p additional variables requires us to augment the equations (I.21), (I.22)and
(I.24) with the p extra equations (I.41). The ideal chemical potential, ﬁia ,

will now be regarded as an explicit function of nja, na, T and P

—Q

[T

_Gon0 o
i '“i(nj,n

T, P) (II1. 6)

)

The excess chemical potential, Auia , will continue to be considered as de-
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pending explicitly only on anz’ T and P.

AIJ" _A“' (n] ’ 7 P) (III 7)

The reason for this dichotomous treatment of the chemical potential is that
it permits algebraic simplifications in later stages of the development. Finally,
for simplicity of notation we shall select the first I species of the gaseous
phase (@ = 1) as the components.

If we take In n , In n? and In T as the expansion variables then the

Newton-Raphson equations (II. 5) have the explicit form

l
a BB 1 11 B
EG B(ajk+rj )-53 E Vis (6k+I‘1k) Alnnk-<Alnn -Alnn Z\Ilvib

Bk

l l
o E; 1 _ o E ; _ .
-(Hj IVIJH)A%T AInT = - By - Vij“i RT (@=1,2,...p;

i=1 i=12,...m)

E > o’ a_ o _

. ijnj Aln nj —qk"’qk (k—l’z,.lol)

E :n]fyAlnnja-naAlnna =na-2nia (@=1,2,...p)
. i

J

E (n].a Hja/RT) A 1n n]f" +<E c].a nja/R> AlnT = (H, - H/RT
a, ] o, ]

where all quantities in these equations are evaluated in terms of the current

estimates for nja, na, and T. The unsymmetric matrix T' that appears in

(I11. 8)

these equations is defined as



3 (AuY/RT)
r‘ﬁf - JB = nf Au‘j"ﬁ - 52P rﬁf (II1. 9)
dlnn
k

Because Auja is homogeneous of degree zero in nia , the matrix T satisfies

the two relationships

SN_ag . S\ o
(LsTik=2=/ Tk
Bk K

a o W
Enj Fj£=0=4jnfrﬁf
]

a,]

(I11. 10)

The assumption that A u].a was to be considered only as an explicit function of
the nia and not of n® was made in order to retain these useful properties.
The Newton-Raphson equations (III. 8) represent (p(m + 1) + 1) linear equa-
tions in a corresponding number of unknowns (note that the first equation
contains ! identities (@ =1, j =1,2,...7)). In any problem of practical in-
terest the actual number of equations could easily approach or surpass one
hundred. For this reason pragmatic considerations demand that some reduc-
tion be made in the number of working equations. Brinkley essentially assumed
that T' could be neglected in (III.8). We will shortly demonstrate that a reduc-
tion in the number of working equations can be achieved without this assumption;
however to display the working equations in their usual form, let us neglect T.
The neglect of T' in the first member of (III. 8) enables us to solve these equa-
tions for the corrections to the moles of constituents in terms of the compo-
nents. Substitution into the remaining members of (III. 8) produces the reduced

number of working equations in the form



42

/A p )
1 o a SN\ ao. S\ ,
Erki A ln n; + E E ijnj Alnn~ + /_J ijnj Hj - L./ rkiHi RTIAInT
i=1 a=1\j a,j i=1
: &
1 _ 0 a o 1 _
-Alnn Erki"qk-qk Evkjnj “j '/_{rki“k RT k=12"...1)
i=1 ,j i=

l l \

NI -2' : a 1 SN a a E \ AN a\,,1 :

Z_/ Vijnj Alnni + ll__/ Hj nj -\ Vg Hi RT|AInT
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i=1\ j i-1

L
1;:}; a _ o E:a a§>\\ al 1
-Alnn Vijnj =n - n, +é} - /__/ Vijnj By RT
i=1l j j

i=1\ j (a=1,2,..,p)

1

(11, 11)

a o 1 2m2
Vinj n; H; /R°T“|AInT

L('I,j a,] i=1 o,j

1 oo
- ..H. n. = -H T
Alnn > ‘ E :VIJHJ n; /RT (H, )/R

i=1 o, ]

where

o .
Tik = E Yii Yk G,k=1,2,...1) (IT1. 12)
aj

These equations can be solved for the component corrections, Aln nil, and the
constituent corrections can then be calculated from the first member of (III, 8),

again neglecting T,



43

Equations (ITI. 11) encompass both the Brinkley and the Huff variations of
the Newton-Raphson calculation. To obtain the iteration suggested by Brinkley
we need only make three specializations: (1)ignore the last equation in (III. 11)
and set Aln T to zero in the other equations; (2) treat: the A ln ni1 i=12,...1)
and A lnn?% (¢ =1,2,...p) as independent variables and calculate the constit-
uent mole numbers from the components and estimates of the equilibrium con-
stants based on the current compositions; and (3) interpret the logarithmic
corrections A In x(k) as (x(k+1) - x(ka/x(k). To obtain the Huff variant we
must: (1) retain the temperature as a variable; (2) select atomic species as
components (vij = aij’ ql(: = bﬁ); (3) treat both components and constituents as
independent variables during the iteration; and (4) use all corrections in the
logarithmic form rather than the linear form. Items (3) and (4) of the Huff ver-
sion are quite important from a practical standpoint. For example, the use of
logarithmic corrections automatically insures the fact that all variables will
remain positive if initially chosen to be positive and thus will satisfy the non-
negativity constraints in the mole numbers nf'. The disadvantage of treating
only the component moles as independent variables is that one needs rather
good estimates for the components to obtain a convergent iteration. This prob-
lem has prompted some authors to devise schemes for obtaining initial estimates
for the Newton-Raphson iteration 64, 66'67. An alternate approach to this
problem is to select as components only those species that are present in major
amounts. This is not completely satisfactory since it creates the problem of
changing components during the course of the iteration. This ""optimum com-

ponent'' procedure has been used 52, 62, 68-, however, the problem can be handled

in a less complicated manner by treating all species as independent during the
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iteration, This often produces a convergent iteration even with relatively poor

estimates, This latter method, while less susceptible to divergence, has been
known to diverge. The divergent cases can be handled by using a descent
Newton iteration,

The basic disadvantage of the working equations (III, 11) or of their pre-
decessors (III, 8) is the asymmetric treatment of the species. From these
equations it is obvious that the components are singled out for preferential
treatment, In the case of (III, 11) this is more obvious than true since we dem-

d 69 that the equations could be put in a symmetric form by a simple

onstrate
transformation that eliminates those linear combination terms in (III, 11) that
are component dependent, Introducing a variable uy by the definition

Alnnl=u + @/RDAINT-pl+amal  (=1,2,...2) @0 13)

i
and substituting this into (I, 11) gives as the symmetric equations determining
u;, Alnn® and AIn T

o
é Ty + <? Vi J> Alnn +<D Vi H] /R'I> A ln. T

a,]

=q§—qk+Dijnjauja RT k=12.,..1)

Vijnja>ui+(Ha/RT)A1nT=na - E n;x+Ga (x=1,2,...p)
' (III. 14)

i
i].Hjanja RT| u, +E(H /RT)A In n® + Ecan /

a,j @3
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The substitution of (III. 13) into the first member of (II. 8), neglecting T, gives

the corrections to all species in the form
l

o o o o j=1,2,-..m
A lnn; = - b /RT +Z>uivij+(Hj /RT)AIn T+ Alnn={ ;o p

J =1,4,...

i=1

(II1. 15)
This form (IIL. 14), (III. 15) of the Brinkley-Huff iteration is computational su-
perior to the original formulation because all species are given an equivalent
treatment.

FREE ENERGY MINIMIZA TION METHODS
Prior to 1958 all equilibrium computations were carried out using the
equilibrium constant formulation of the governing equations. In 1958 White,
Johnson and Dantzig 70 suggested that equilibrium compositions be calculated
by ''free energy minimization'', Their procedure soon captured the fancy
of some of the people making thermodynamic calculations, and it became
71-175

the basis for a number of computer programs . The world of equilibrium

computations was then divided into two camps, the free energy minimizers, and
the reactionary equilibrium constant formulaters. It was not long before extrav-
agant claims and counterclaims of guaranteed convergence were heard from
proponents of each method. So heated became the controversy that when a panel
discussion was arranged to discuss equilibrium computations in 1959 76, it
was necessary to divide the panel into a free energy panel and an equilibrium
constant panel. To see what it was that provoked such a controversy let us
examine the method of free energy minimization.

As we did in the discussion of Brinkley-Huff iteration we will deviate some-

what from the original presentation. This will enable us to incorporate some
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subsequent developments and it will also put the method in proper perspective.
We will formulate the method for the case where the thermodynamic state is
specified by pressure and enthalpy since this will facilitate a comparison with
our development of the Brinkley-Huff method; however, it should be clear that
any two thermodynamic variables will suffice. To obtain the method, weneed
only apply the descent Newton-Raphson method to the equations (I.7), (I.24)
and the dimensionless form of (I.9) obtained by dividing the equation by RT.
The function y to be minimized may be the Gibbs free energy G to which
has been added one half the sum of the squares of (I.7) and (I.41). It is no
restriction to require that the estimates for the Lagrangian multipliers ™
= -Ai/ RT be taken as zero for each iteration since the multipliers occur
linearly in (I.9). Again, as before, we will use the n? as independent vari-
ables and thus we will add (I.41) to our set of equations and in addition we will
us e, except for the Tis the logarithmic form of the variables in the expansion.

With these conditions we obtain as the Newton-Raphson equations

L
af BB B
E 0 (ij + I‘jk) Aln n - Eauﬂl - Alnn%
B, k i=1

a a a=1’2,ooo
-H/RT)AInT=-pu;. /RT : (I11. 16)
J J ]=1,2,ooo
o a .o
.ak].n]. Alnn]. =by - by k=12...7)
a,j
n?Alnn® -n Alnnazna-z;na
a,]

nJ H“/R’I’)Aln n;” + (Enjacja/féA InT= (H0 - H)/RT

a,] a’j
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The basic similarity of these equations and the corresponding equations (III. 8)
of the Brinkley-Huff method is now clear; the only difference occurs between
the first member of each set, As a matter of fact, if (III, 8) is written with
atomic species as components and if we eliminate the =; from (I1. 16) by
using the first ! equations of the first member of (III.16) (¢ =1, j =1,2,,.1)
we then obtain exactly (III, 8) because 2 = Gij G=1,2,...1). But this should
have been obvious from the outset since it is quite immaterial whether the
Lagrangian multipliers are eliminated prior to linearization or subsequent to
linearization, It should also be abundantly clear that neither method can have
any inherent advantage; however, this is not meant to imply that ''free energy
minimization'' has no computational advantage, The benefits that exist are
associated with the fact that no species are singled out for special handling,
This, for example, makes it possible to incorporate the effect of the matrix
T into the iteration while still retaining a small set of working equations an-
alogous to (III, 14), The corresponding development in the case of (III, 8) is
considerably more awkward. Although it is desirable to use T in the iter-
ation, it is not absolutely necessary to do so in order to obtain a convergent
iteration, However, once the equilibrium compositions have been calculated
and one wishes to calculate the thermodynamic derivatives, it then becomes
necessary to use T to obtain the correct values for these derivatives.

The equations that must be solved in order to obtain the thermo-

dynamic derivatives Cp, 0V/8T and 0oV/oP from (I.30)-(I.32) are

very similar to the iteration .equations (III, 16). This similarity
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enables us to give a simultaneous discussion of the procedure for taking account

of non-ideal effects. The equations for the derivatives with respect to T are

given by the expressions

"\ B 1
L/GQB(G. +I‘.BB)alnnk_Ea‘_ o _alnnazHg/RT
Gk k" mr U amT mT
i= a=1,2,...p)
j=1...m
o
o ln n,
Eakjn].a -0 ®=1,2,...7) (IIL. 17)
a3 dIn T
a
0 ln n, o
2 :n.a J _naalnn -0 (@=12,...p)
1 amT dln T

The equations that determine the derivatives with respect to P are

l
alnnB om, o
Eﬁaﬁ(é'k+r§1§) k g._ L _dlnn - -PVY/RT
] X73mPp &/ Y3smP slnP ]
B,k i=1
<¢;=1,2,...p>
aalnn.a =1,2,...m
a0 l =0 ®=1,2,...1) (I11. 18)
& M smp
)
d1nn? o
En.a j .p@8lnn _, (¢=1,2,...p)
; ] 3mp dln P

Apart from the fact that the coefficient matrix of (III. 16) has one more row

and column than either (IIL. 17) or (III, 18), the three sets of equations are °

identical. To illustrate the reduction to a smaller set of working equations
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we shall use the more concise matrix notation My = w to symbolize any one of
the three sets of equations (III. 16), (III. 17), or (III. 18). Further, we shall
assume that the matrix M and the column vectors v and w have been par-
titioned so that the set of equations can be written in the form
Mir Mio) /% A}

= (IIL. 19)
My Moo/ \¥g Wo

The column vector v is associated with the variables n]q while vy is

associated with the remaining variables. If the square submatrix M 1=1+T

is assumed to be nonsingular then we can write

-1
Vy= MWy - Mypvy) (IIL. 20)

This expression can now be used to eliminate v, from the second member of

(I1I. 19) to give

|2

Vo =Y (I11. 21)
where

-1
Mgy -My My My

_ -1
Yy =Wy - My My Wy

E =
(IIL. 22)

The matrix N and the vector y both contain the inverse of M-ll which must
either be calculated numerically or else must be known as a closed form analyt-
ical expression. Numerical inversion of M 1 would defeat our avowed purpose

of providing a smaller set of working equations analogous to (III. 14) and a
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closed form expression of M_ii is not possible under all circumstances.
However, when the contribution of T' to M,; can be regarded as a pertur-

bation, then Mii may be replaced by its iterative expansion

_M_i% = E (-1)kr* (I11. 23)

where

il

r’=1
The substitution of (III. 23) into (III. 22) gives as an alternate expression for

N and y.

PG y =
k=0

where the matrices g(k) and the column vectors x(k) are defined by

y® (IIL. 24)
k=0

k) _ (0, k) k k
N =M,,5 - (-1)" My I M,y

(I11. 25)
y® - w6 @B | (pf M, rfw

The index k effectively gives the order to which the perturbation matrix T
appears in the various terms. Therefore, we are now in a position to apply
conventional perturbation theory to the solution of the reduced set of equa-

tions (III, 21), Writing

vy = E v (I1L. 26)
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and equating terms in (III. 21) with the same order of perturbation we obtain

the usual hierarchy of equations

§( !goi _y©
k . .
y_(o)‘_,gk) -y ® _EE(J)ng-J)  k=1,2,...) (III. 27)

These expressions can be used to calculate D) to the desired order of per-
turbation. The expression for vy can then be obtained from D) by using

(IIL. 20).

n

E vi) =E (-1"rw, E (-1¥ r¥ My, vP) (IIL 28)

n=0 n=0 k=0

|<

Explicit expressions for the matrices ﬁ(k) and the vectors y(k) can be

readily constructed for the iteration equations (III. 16). These can be written

in a compact form by first introducing the notation

o ao a o
Ap =[Ap,jk] n =E1j ajg (III. 29)

and then defining the sequence of symmetric matrices

(I)Aa -n® ap®n® (I11. 30)
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N

With this notation we have for

p

> ' Do ’
(n), & (n, 0) B n
5 Notifkg | ° 4—’ A1i" I‘a J, Ajq3i Hy/RT
NO= (1 |5(n 0) E a | 0 | 5(0 0) (Y /RT)
& Tk |
E(") ® HY%, /el 6@ OB /Ry 60 O)E aca/g
a,j,q 1-xq |
I
Z_/ (n)A a/
L , !+ @, ,9 Toh
(IT1. 31)
i,k=1,2,...1
(7’ B= 1’27---p>
while the column vector z(n) has the form
_ — ]
o™ 0w )+ ), (n) & 8y g/RT
_ a,j,q
¥y = (pn 5(n; 0) Eff - D n! + Gy/m]
j
(n 0) (n), o o T2
- H)/RT + E A]qH] .
@, 7,4
I | (IIL. 32)

i=1,2,...1
vy=12,...p

The expressions for N(n) and y(n) were considerably simplified by using the
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properties (III. 10). The zero order approximation of (III. 27) and (III. 28) is
now easily seen to be identical to the modified Brinkley-Huff equations (III. 14)
and (II. 15) when the components of the Brinkley-Huff method are atomic
species. Equivalently, the identity could be established by writing the free
energy equations in terms of components.

The original presentation of the free energy method differed consider -
ably from our discussion. Whiteet al, 70 derived their equations only for
the ideal gas phase and minimized the quadratic approximation to the Gibbs
free energy for an assigned temperature and pressure subject to the mass
balance constraint (I.7). Their equations may be obtained from our zero
order approximation by taking p = 1, deleting the last row and column of
ﬁ(o) and striking out the last element of 3_7(0), setting bi equal to b;),and
interpreting all corrections linearly rather than logarithmically. The imple-
mentation of their version of the free energy method requires that the esti-
mates always satisfy the mass balance constraints, In principle this is no
problem; however, it does cause unnecessary difficulties in practice. These
arise because round-off errors can cause compositions to violate mass bal-

ance even though the initial estimates satisfied mass balance. Both Levine K

69

and we indicated how to modify their equations within the framework of

their derivation. The extension of the White method to multiphases and non-
ideal systems was done by a number of people 78'81, all using the quadratic
approximation to the Gibbs free energy. We developed the perturbation ap-
proach to incorporating the effects of non-ideality on both‘ the iteration and
the calculation of thermodynamic derivatives 14. For the sake of complete-

ness, we will now give the formulae for calculating the derivatives CP/ R,
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9InV/9InT and 91n V/31n P. Inall cases the matrices ﬁ(n) are the
same as (III. 31) with the last row and column deleted. The vectors s_r(n),

however, differ from (III. 32). For the temperature derivatives }_,(n) has

the form
- -
N ()0 o
- T
@ | Ls et /R
vy =(1)"] a,j,q (I11, 33)
-5@ OgY/RT) | i=1,2,...1
) i} Y = 1, 2’ b
while for the pressure derivatives it becomes
(n), &
z : g al]Vq
y(n) - (-t B | %ia (ITT, 34)
- RT
n, 0
~(3(, )V'Y N i=12...1
7=1’29°-op

In terms of the solutions to the hierarchy of equations (III. 27) and (III. 28) the

expressions, (I.30), (I.31) and (I. 32), for the thermodynamic derivatives be-

come
- T\ o\(0)
i f1) alnT
r=0 a,) o

(I1I, 35a)

(r-n)

o,

ey )y e B D 3 Egl‘) L) Pty v
In T @5.q
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- vy A\
aan=_lZ>5(r,0 Enja i +Eva<31nn‘)
dlnT V &= ? InT dln T
r=0 a,] ~ o (ITI, 35b)
r
— VY O\ (r-n)
e 5 e Vit E )@
+(-1) Y qu RT * L_/ (-1) oIn T A]qaquJ
a,j,q n=0 =1 a,j,q
0
o (0)
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L (r-n)
(-1f 2 E () V?‘V"‘+E (-1) E E(H)A vy
,j,q n=0 i=1 @,j,q

In addition to these derivatives with respect to T and P we could also calcu-
late derivatives with respect to the independent parameters b?. These would
be significant in the application of thermodynamics to fluid dynamical problems
when one assumes that the flow field is characterized by local thermodynamic
equilibrium. The resulting formulae are similar to (III. 35) and therefore we
will not reproduce them here.

The free energy method that we have just discussed was shown to be ades-
cent Newton method with the objective function chosentobe essentially the Gibbs
free energy. This choice of the objective function could easily be supplanted by any
other suitable test function, and thus it seems inappropriate to label the meth-
od by a particular choice of test function. There is another method, due to

Naphtali 82-83

that perhaps seems more worthy of the name. He regards the
Gibbs free energy as a function of the extent of reaction variables gr and then

uses the method of steepest descent to minimize G for assigned values of
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temperature and pressure. The components of the gradient vector are just the
equilibrium constant expressions as is apparent from (I, 15)
ﬁ = IJ, aAa'
ok 11T
r 4
a,j

Because the £, are essentially used as the independent variables, the esti-

mates for the composition variables must satisfy the mass balance constraints.

This causes the same problems here as in White's original version of the de-
scent Newton calculation. This calculation suffers from the same drawbacks
that any equilibrium constant method must endure; that is, one must write
appropriate chemical reactions and one must make a judicious choice of com-
ponents. Snow 84 has suggested two changes to improve the method. The
first of these is to use a weighting matrix B (II. 18) that is diagonal with the
rth diagonal element being chosen as the smallest mole number in the rth
reaction. Second, he suggeststhat ‘*parallel reactions'' be written which, in
effect, means making a more appropriate choice of components.

Dobbins 85 has used what could be considered a univariate version of
Naphtali's iteration. The direction of descent is along the coordinate line gr
that has the largest component of the gradient. In addition he uses atomic
species as components and uses an approximate form for the Gibbs free en-
ergy during the calculations in order to reduce the calculating time.

86 used a slightly different approach in the cal-

Story and Van Zeggeren
culation of equilibrium compositions of an ideal gaseous phase at an assigned
temperature and pressure. Instead of working with the moles n, (the phase
index has been suppressed because only the gas phase is considered) they

essentially introduce logarithmic variables by defining variables z; by the
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relationships

The n? plays the role of the current estimate of composition. They obtain

a set of equations analogous to (I.7) and (I. 9) by mininmizing the Gibbsfree en-
ergy subject to the constraints that z is a unit vector and that mass-balance
is preserved. These equations are then solved for z by one step of a Newton-
Raphson iteration with z = 0 as an initial estimate. To facilitate the com-
putations of z some terms in the Newton-Raphson equations are neglected.
The length of the step in the direction z is then obtained so as to minimize
the Gibbs free energy.

We've gone into considerable detail in the exposition of methods for cal-
culating equilibria in the presence of chemical reactions. Concomitantly we've
slighted the calculation of phase equilibria and ignored the problems associ-
ated with obtaining solutions to (I. 26) and (I.27). However, when thermody-
namic data are available, the same kinds of calculational methods can be ap-
plied tothe computation of phase equilibria as are used in the calculation of
reaction equilibria. The only real difference is that in phase equilibria each
species is a component whereas in reaction equilibria some species are com-
ponents and others are constituents.

This concludes our review of calculation methods; however, we still wish
to express our opinion on what is the best method of calculation. We feel that
any method of calculation that can be made reliable is a good method when
equilibrium compositions are the only concern. H, however, thermodynamic

derivatives must also be calculated then the scale shifts strongly to the descent
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Newton method. In particular we mean the iteration equations in the form
(I1I. 16) or the reduced form (III.27) and (III. 28). The reason for this is that
the iteration and the calculation of derivatives are cast in the same form. With
the other iteration methods, it is necessary to write one program to calculate
compositions and another to calculate the derivatives since these can only be
calculated from (III. 17) and (III. 18) or their counterparts in the Brinkley -Huff
calculation. The Brinkley-Huff equations for calculating derivatives are iden-
tical to (III. 17) and (III. 18) in the ideal case; however, when non-ideality must
be taken into account, then (IIL. 17) and (III. 18) are preferred because they lead,
in a relatively simple manner, to reduced working equations., It might be
argued that thermodynamic derivatives are relatively unimportant and that when
they are required they can easily be approximated by the non-reacting contri-
butions to (I.30), (I.31), and (I.32). Thus it would seem to indicate that the
choice of a method based on its ability to calculate derivatives has no signif-
icance. Such an argument is fallacious on both counts. First, thermodynamic
derivatives are significant for many applications of thermodynamics. Second,
we will show shortly, by numerical example, that in many cases the contri-
butions of the reactive part far exceed the non-reactive contributions to the
thermodynamic derivatives.
EXISTENCE OF SOLUTIONS

Our discussion of the numerical methods that can be used to generate solu-
tions of the thermodynamic equations has completely ignored the possibility
that these solutions might not be unique. That is, such solutions could be
either global minima or else they might merely be local minima of the Gibbs

free energy. Thermodynamically the local minima correspond to the so-called
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metastable states while global minima correspond to true equilibrium states.
Such a question, while important, cannot be given a general answer because
the answer depends upon the shape of the Gibbs free energy surface for
the system under consideration, The Gibbs free energy varies from sys-
tem to system because it reflects the varying degree of non-ideality present
in each system. A definitive answer can only be given for ideal systems for
which an analytical expression for the Gibbs function is known. Hancock and
Motzkin 87 investigated a system composed of an ideal gaseous phase and pure

88 examined a system in which

condensed phases while Shapiro and Shapley
all phases were ideal, The conclusion in these studies of ideal systems is
that if a solution exists it will be unique,

APPLICATIONS

The previous sections have reviewed the thermodynamic relationships and
numerical techniques which permit the calculation of equilibrium compositions,
thermodynamic properties, and thermodynamic first derivatives for mixtures.
Theoretically calculated properties have been used in a wide variety of practical
applications in chemistry and chemical engineering such as the analysis and
design of chemical processing equipment, heat exchangers, steam power plants,
engines, turbines, compressors, nozzles, and shock tubes.

The usefulness of theoretical thermodynamic properties in predicting actual
results depends largely on how closely the assumptions used in the calculations
approximate physical reality. In some cases significantly different values may
be obtained from various assumptions. In this section a few examples have been
selected (a) to illustrate the calculation and use of thermodynamic properties

and (b) to point out differences due to several assumptions. These examples
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include (1) calculation of flametemperatures, (2) calculation of specific heat
and other derivatives, (3) isentropic expansion, (4) use of derivatives to pre-
dict effect of change of an initial condition on some final condition of a thermo-
dynamic process, and (5) use and effect of a convergence control factor .

Numerical data, which we will use to illustrate the examples, are given
in Tables I to IV. These tables are direct computer output and contain some
notation to the left of the numerical data which is intended to be similar to that
used in this paper, but whose similarity is not always immediately obvious.
This lack of similarity is due to the fact that the printer does not contain Greek
letters, lower case letters, and subscripts. Thus, for example, Po/ P appears
in the tables as PO/P and CP as CP. Chemical formulas in the tables also
differ somewhat from their usual representation. Each chemical element in
the chemical formula of a species is followed by a numerical value even when
it is unity (as in equation (I.6)), and the phase is indicated between parentheses.
For example, gaseous HZO is given as H201(G), We will clarify other notation
in these tables during subsequent discussion.

All the examples selected are for one phase, ideal gas systems. Before
proceeding with the examples it would be well to clarify what we mean by an
ideal gas. The chemical potential of an ideal gas Eil is given by equation (I.40).

For this gas the partial molar volume is

1

Vi=

RT/P (Iv.1)
Equation (IV. 1) together with equation (I.29) gives the familiar equation of state

PV = EniRT = nRT (Iv.2)
i
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Equation (IV.2) applies to an ideal gas in the sense that no interparticle
forces are assumed to exist. There is no restriction, however, as to whether
the n, remain constant or are variable as a result of a change in system tem-
perature and/or pressure. Thermodynamic texts usually assume ideal gases
to be only those for which the n; in equation (IV.2) remain constant or, equiv-

alently, those for which the internal energy U satisfies

(3_U)T -0 (IV. 3)
A

The only criterion necessary for a gaseous mixture to be considered ideal
is equation (IV.2). A gas which, in addition to equation (IV.2), also obeys
equation (IV. 3) is a special case of an ideal gas. We will refer to ideal gaseous
mixtures which obey both equations (IV. 2) and (IV. 3) (ni constant) as nonreac-
ting; while those mixtures to which equation (IV. 2) applies but equation (IV. 3)
does not (n'i variable), we will refer to as reacting,

CALCULATION OF FLAME TEMPERATURE

Theoretical flame temperatures are us eful for many engineering appli-
cations. They indicate the maximum temperature at which thermal energy
released during chemical reactions will be available for conversion to other
energy forms such as kinetic energy or work, and they also indicate possible
problems relating to materials and cooling.

Equilibrium compositions and adiabatic flame temperatures for specified
reactants may be obtained from the solutions of iteration equations (III. 14) or
the first member of (III. 27). (The second member of (III. 27) is identically zero

for the case of ideal gases.) However, the results so obtained depend consid-
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erably on which species are assumed to exist in the reacted mixture. For
example, for a stoichiometric mixture of Hz(g) and Oz(g) at a temperature
of 298.15° K, the combustion temperature is calculated to be 4998° K if
HZO is assumed to be the only combustion product. If, however, other species
such as H, H,, HO,, O, O2 and OH are also assumed to exist and the com-
bustion pressure is assumed to be 50 atmospheres, the combustion temperature
is calculated to be 3636° K. The results for this particular calculation are
shown in the first column of Table I corresponding to the pressure ratio P O/P
= 1. Other parts of this table and Table II will be discussed in the later ex-
amples.

The conclusion to be reached from this example is that one should include
as possible constituents all species which are considered likely to be signif-
icant for some set of conditions. Unfortunately, for complex systems it is
difficult, if not impossible, to predict a priori which species are significant
for all possible conditions. For example, inthe C, H, O, N, F, Cl system,
we might initially consider the 69 gaseous species indicated in Table III. De-
pending on the various atom ratios which might be selected and the temperature
and pressure defining the thermodynamic state, some of these species will
sometimes be significant and other times insignificant.

This is the type of situation for which the general computer programs dis3-
cussed in section III are particularly well suited, in that a priori decisions do
not have to be made as to which species to include or exclude. For example,
consider the reaction of perchloryl fluoride (ClO3F) with unsymmetrical di-
methyl hydrazine (C2H8N2). The results for the stoichiometric reaction of
C2H8N2 + 20103F are given in Table III for a pressure of 1 atmosphere and
for several temperatures from 500° to 5000° K. Of the 69 species considered,
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22 have a mole fraction greater than 0. 000005 for a least some of the specified
conditions. At the two lowest temperatures selected (5000 and 1000° K), only
the five most stable species have a mole fraction greater than 0. 000005.
CALCULATION OF SPECIFIC HEAT AND OTHER DERIVATIVES

Thermodynamic derivatives have many applications in chemical processes.
For example, specific heat, which is one of the most commonly used thermo-
dynamic derivatives, appears in applications such as heat transfer calculations,
isentropic or isenthalpic relationships, or shock wave parameter calculations.
As will be made apparent by the discussion and numerical examples that fol-
low, the assumption of reacting or nonreacting mixtures may affect consider-
ably the computed values of thermodynamic derivatives. In addition, as we will
show in later sections, relationships involving these derivatives which are often
valid for nonreacting mixtures may not be valid for reacting mixtures,

A knowledge of specific heat and two other first derivatives such as
(av/ aT)P and (3V/ aP)T permit one to obtain relationships among all thermo-
dynamic first derivatives by use of tables such as devised by Bridgman 4. We
will first give some discussion relating to the evaluation of these three deriv-
atives and then give some numerical examples to illustrate differences in values
between reacting and nonreacting mixtures.

Expressions for evaluating Cyp, dV/oT and dV/9P are given in equations
(I.30) to (I.32). Values of anfl /3P which are needed in these equations may
be obtained by solution of equations (III. 17) and (III. 18). Alternatively, ex-

pressions for C_ and the volume derivatives in logarithmic form, 9InV/81nT

P
and 21n V/d1n P, are also given in equations (III, 35). Since we are dealing

only with ideal gases in our examples, we will suppress the index « and we
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will need just the zeroth order derivatives in equation (II. 35); i.e.,
m{®/a1T, (3inn/olm T, {9751 P, and (31nn/a1n P)O). These
zeroth order derivatives may be obtained from the solution of the first mem-
ber of equation (III. 27) where _N_(O) is given by (III. 31) and X(O) by (III. 33)
and (I. 34).

Prior to solving equations (III. 17) and (III. 18) (or the first member of
equation (III. 27)) an explicit equation of state is needed in order to obtain

13 pas evaluated the

the V{x. For the case of gases only (o = 1), Michels
Vil for a non-ideal equation of state, For gases behaving ideally, equation
(IV.2) applies.

For the case of anonreacting gas obeying equation of state (IV.2) and equa-

tion (IV. 3), equations (I.30) to (I. 32) become
m

CP =E Clnl

i=1
(61InV/d1ln T)p =1 (IV. 4)
(1ln V/3 In P)p = -1

The logarithmic form of the volume derivatives was selected to indicate per-
centage changes between reacting and nonreacting mixtures in the numerical
examples which follow.

The data in Tables I, III, and IV illustrate the differences in magnitude
between derivatives for reacting and nonreacting mixtures. The data show
that for the same temperature, pressure, and equilibrium compositions two
sets of values exist for these derivatives. The first set of values is for reac-

ting mixtures and is obtained from the contribution of both terms in equations
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(I. 30) to (I.32), whereas the second set is for nonreacting mixtures and in-
cludes the first term only (eq. (IV.4). The differences in these two sets may
be large or small depending on the contribution of the second term. Thus in
Table III, at T = 500° K, the two sets of derivatives are equal, but at T =
3500° K the values for CP are 2.91166 and 0. 38301 cal/gmoK for reacting
and nonreacting mixtures respectively.

Table IV is given to further illustrate that these differences may be
dramatically large. The data in Table IV are for a stoichiometric H2-02
mixture at a pressure of 0. 001 atmospheres and at several temperatures
from 1600° to 3200° K. The largest differences occurred at T = 2600° K,
where values for CP are 23.61233 and 0. 76922 cal/gmoK for reacting and
nonreacting mixtures respectively. Thus, in this instance, the contribution
of the second term in equation (I.30) due to composition changes produced by
a change in temperature is many times greater than the contribution due to
the heat capacities of the equilibrium species at the given temperature. Sim-

ilar large differences due to the assumption of reacting or nonreacting mix-

89 gives

tures are also found in calculated values of heat conductivity. Svehla
an extensive tabulation of thermodynamic and transport properties for the
H2 -O2 system. Large differences, although not as dramatic as the one just
illustrated for specific heat, are also found in the volume derivatives in
Table IV. '

The existance of two sets of derivatives may lead one to ask which set is
""correct''. Unfortunately, thermodynamics cannot settle the question inas-

much as the correct answer is determined by the kinetics of the reactions in-

volved. Thetwo sets of values represent the extreme limits of infinitely fast



66
reactions and infinitely slow reactions. If a process is such that the important
reactions involved have time to reach equilibrium or near-equilibrium, then
the reacting values are probably more nearly correct; contrarily, for slow
reactions, the values of the nonreacting mixture are probably preferable. For
intermediate situations, neither assumption may be satisfactory and calculations
using rate constants should be made 90.
ISENTROPIC PROCESSES

Isentropic processes represent a good approximation to many actual pro-
cesses. They are used in thermodynamic cycle analyses involving expansions
or compressions, in various flow processes such as flow through a nozzle, or
in the calculation of parameters such as the velocity of sound. In analyses
involving isentropic processes, one often would like to predict conditions at
the end of a process from a knowledge of conditions at the beginning of the pro-
cess. For example, knowing the pressure and temperature or pressure and
volume at the beginning of a process, one might like to know the temperature
or volume corresponding to an assigned pressure at the end of the process.

Relationships between temperature, pressure and volume for an isen-
tropic process involving a nonreacting ideal gas are found in any elementary

thermodynamic textbook. These relationships include the following:

T/T, - (P/PO)(V'l)/V (IV. 5)
and

PV’ =P V7 (IV. 6)

where
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In equations (IV.5) and (IV.6), ¥ is assumed to be constant or an average
value between the initial and final states of the process. Another common
expression involving v, which is also based on an isentropic relationship, is

for the velocity of sound
a = ‘}/nRT (IV. 8)

Here n must be taken as the moles per unit mass.

Equations (IV.5), (IV.6) and (IV. 8) usually give reasonably accurate re-
sults for nonreacting ideal gas mixtures. Unfortunately, because of their
ubiquitousness in the literature, these equations are often mistakenly used
for reacting ideal gas mixtures for which they do not apply. We will first
present relationships that are similar in appearance to those of equations
(IV.5), (IV.6)and (IV.8) and which do apply for reacting as well as nonre-
acting mixtures. We will then illustrate these relationships with some nu-
merical examples.

To obtain these relationships we will need to evaluate the two isentropic
derivatives (2 1n T/9 ln P)g and (9 1n P/d 1n V)g in terms of Cp,

(01ln V/03 In T)p, and (31n V/3 In P):

(a In T> _PVfaIn v) Cp (V. 9)
oInP)g T \¢InT)

and
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C
1n P\ _ P (IV. 10)
3ln V C(alnv>T

Az

where

aT v a In T a In P

Equation (IV. 10) may be written

1l

Yg = - 7/(8 In V/3 In P)y, (Iv.12)

yy = - (2 F (V. 13)
d1ln V/g

The calculation of (3 In P/d In V)S permits one to evaluate the velocity

where

of sound according to the relationship

a2 - [R) _ _EBfolnP (IV. 14)
aps p aanS

where p is density.

In the case of a nonreacting gas, the relationships in equations (IV.9),

(IV.10), and (IV.11) reduce to

(alnT>=R _y-1 V. 15)
BlnPS CP Y
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d In =Yg =7 (IV. 16)
olnV S

Cp-Cy=R Iv.17)

Integration of equations (IV.9) and (IV. 10), assuming (0 In T/d In P)S
and (8 1n P/2 In V)S are constant or represent some mean value over the

interval of integration, and using the identity of equation (IV. 13) gives

T/T, = (/P )P 10 T/2 1n P)g (IV. 18)
Ys Vs
PV S-PV (IV. 19)

For practical applications, only the exponent at the initial point may be avail-
able for use in equations (IV. 18) and (IV. 19).

We may write equation (IV. 14) as

a = 4/yRT (IV. 20)

Here, as in (IV.8), n must be on a per unit mass basis. From the definitions
of equations (IV. 15) and (IV. 16), it may be seen that equations (IV.5), (IV.6)
and (IV. 8) for nonreacting mixtures are just special cases of equations (IV. 18),
(IV.19) and (IV. 20), respectively.

We will use the data in Tables I and II to illustrate the use (and misuse)
of equations (IV.5) and (IV. 18) and also equations (IV.8) and (IV.20). Table I
presents the data for stoichiometric H2-O2 at several specified pressures
and at constant entropy. These data represent an isentropic process where

the data in each column are the equilibrium.properties at the temperature and
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pressure shown. Table II presents similar data to that of Table I with the
important difference that species composition is assumed fixed (nonreacting)
for all the tabulated columns. The fixed composition is taken to be that
corresponding to equilibrium composition in the first column of Table I
(T = 3636° K) and is shown again at the bottom of Table II.

It may be noted that for nonreacting mixtures the values in each column
for the pair  and Yg 8given in Table I are equal as are also the values for
the pair (2 In T/9 1n P)S and (y - 1)/y. (In Tables Ito IV, y is labeled as
GAMMA Vg S GAMMA(S) and (31n T/01n P)S as (DLT/DLP)S). This is
to be expected according to equations (IV. 15) and (IV.16). In contrast to this,
the corresponding pairs of derivatives for reacting mixtures (defined by equs -
tions (IV.9) to (IV. 13)) vary considerably as may be observed in Table I.

Let us now consider the problem of estimating the temperature which would
result from an isentropic expansion over a pressure ratio P 0/ P of 50, as-
suming that we are starting from the first point in Tables I and II. For the

nonreacting mixture, from Table II and using equation (IV.5), we obtain

0.16636 _ ;0040

T = 3636(1/50)
Considering the long extrapolation from 3636° K, the estimate of 1896° K
compares reasonably well with the accurately calculated value of 1826° K
given in Table II.

For the case of a reacting mixture, we will start from the same point as
in the previous example but will now use the data of Table I. If equation (IV.5),
which we have just illustrated for a nonreacting gas, were mistakenly used to

estimate T for a reacting gas (using the equilibrium value of (y - 1)/y =

0.15908), the result would be
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T = 3636(1/50)0: 19908 _ 19590 k

This estimate of 1952° K compares very poorly with the accurately calculated
value of 2613° K given in Table I. If, on the other hand, the correct formula

(IV.18) were used, we obtain
T = 3636(1/50)0- 08830 _ 95740

This estimate of 2574° K compares well with the accurately calculated value
of 2613° K.

We will now look briefly at the values of velocity of sound for stoichio-
metric H,y-O, in Table IV. Velocity of sound (or Mach number) appears in

91

applications such as the determination of shock wave parameters or det-

onation velocities 92.

Values for nonreacting mixtures are obtained from
equation (IV.8) using 7, and for reacting mixtures from equation (IV.20)
using y,. For example, at T = 2600° K, a = 1843. 3 and 1628. 6 m/sec for
nonreacting and reacting mixtures respectively. I equation (IV.8) were
mistakenly used for the reacting gas (using y = 1.32619 instead of Vg =
1. 09756), one would obtain the incorrect value a = 1790 m/sec.

The previous illustrations indicate the need to understand the circum-
stances under which approximate relationships such as equations (IV.4) and
(IV.8) are useful and also when they should carefully be avoided.

EFFECT OF CHANGE IN INITIAL CONDITIONS ON END POINT OF A PROCESS

We have previously discussed 93 some thermodynamic derivatives which
deal with the effect of a change in initial conditions on the end point of a pro-

cess. The following discussion summarizes the pertinent parts of that pre-

sentation and gives some additional derivatives.
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As discussed in the first section of this paper, all thermodynamic prop-
erties of a system of known composition can be specified uniquely in terms of
any two thermodynamic functions, say a and B which can be regarded as the
coordinates of a two-dimensional space. At any point (@, 8), not only are all
the thermodynamic properties of the system determined, but it is also pos-
sible to determine the rate of change of these properties along some curve in
(a, B) space. I, for example, y is a third thermodynamic function, the deri-
vative (0B8/0a) v expresses the rate of change of 8 with respect to o along
a curve of constant y. This partial derivative is the usual thermodynamic
first derivative which appears in thermodynamic textbooks and which we have
discussed so far in this paper.

By a process in thermodynamics we mean that a system originally at some
point (ozo, B 0) has moved to a new point (¢, 8) where (a, 8) may differ by an
infinitesimal or by a finite amount from («a 0 BO). An infinitesimal process can
be completely characterized by a derivative of the form (38/2a) v A finite
process can be specified by giving a starting point (ao, B c)), a path (say a curve
of constant ), and one of the coordinates of the end point a. For a given path,
the only independent variables of the process are the coordinates of the initial
point (ao, Bo) and a coordinate, say «, of the final point. The other coordin-
ate of the final point, 8, and all other thermodynamic functions are dependent
variables in the process.

Let ¢ be any dependent thermodynamic variable associated with the end
point of a finite process. The rates of change of ¢ with respect to the inde-
pendent thermodynamic variables of the process are of two different types. For

a change in @, the usual type of derivative (d¢/0a) v is needed. However, for
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a change in one of the coordinates of the initial points, derivatives of the type
(aqo/aao)Bo and (3¢/ aBo)ao are needed. Expressions for the latter type of
derivative will now be obtained.

For a process taking place along a curve of constant y

Vo (@, B,) = W(@, B) = ¥, ¢) (Iv.21)

Whatever change in ¢ o results from a change in the initial point (ao, 30)
must be equal to the change in y. This may be expressed in differential

form as

0 0
<_ip_(l> do +<_&> d, = <_8i> da +<§£> do (Iv.22)
dar, 38, e 3¢/,
8 a ¢

o o)

Imposing alternately the conditions of constant o o and constant S o gives
the following two desired expressions for the partial derivatives of a function

at the end point of a process with respect to the initial coordinates:

3y, /38.)
<ago> o a%(ﬁﬂ) (a__91_> (IV. 23)
9B, N (ay/a¢), oa zpaBO .
0 (6]
By /oa )
oo . (aw/a@a do v o, .
(0] o

In equations (IV,23)and (IV, 24) all the derivatives.in the right-hand side except

(0a/ 3B O) o and (8a/da O)B are the standard thermodynamic first derivatives and
0 0
canbe immediately evaluated, Thetwo exceptions canbe evaluatedfor a specified
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form of a relation which expressesthe end point of a process in terms of the initial -~
point

o= a(ao, BO) (Iv. 25)
Two forms of Equation (IV.25) are considered in this paper: a = k1 and
@ =kyo , where k, and k, are constants. For o =k, equations (Iv.23)

and (IV. 24) reduce to

<iﬂ> =<i'ﬁ°.> <3_¢/> IV. 26)
Bo) o \%o 99 Joy

0’ aO
3
(5332_> =<a%> (.Zi) IV. 27)
0 B, o/g P/ o

For the particular choice « = kzao, equations (IV.23) and (IV.24) give

a g
<_<'5_¢_> =<i°> (Qﬁ’/_> (IV. 28)
28 2B 3¢
®a ,a /0 /g o

(0)
(is&) =<f‘f2> (L*P) N i(?ﬂ) (IV. 29)
0 d 0 d
"l aja N0l [ N TNy

It may be seen that the right-hand sides of equations (IV. 26) and (IV. 28)
are identical.

Two common processes to which equations (IV. 27) to (IV. 29) apply are
isentropic and isenthalpic. For anisentropic process we can make the fol-
lowing associations: "Uo = So and Y =8S. Inaddition, we can use temperature

and pressure to specify the thermodynamic state and therefore make the fol-
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lowing additional associations: 8, =T, a =P, =P, and a /a =P /P.

Equations (IV.27) to (IV. 29) then become

» oS
%)w_ - Bp_o <z_s> (IV. 30)
o/ P o/ ¢/p
(0]
35\
= - 5T—°) @% av. 31)
Y/p
0O (¢}
P,P /P P,
oS
99 =<_L) (ﬁ) +_£<ise> (IV. 32)
oP oP 1) P_\oP
o) ') P 0o S
T., P /P T,

Equations (IV.30) to (IV. 32) have been evaluated for ¢ =In T, H, and
In V differentiated with respect to In P o and In T o and the results are
given in Table V.

For an isenthalpic process we can make the same associations as in the
previous case except that now y =H_ and y =H. For this case, equations

(IV.27) and (IV. 29) become

JH
29 (o <E>P (IV. 33)

P oP d
%t ,P °/T v
0
oH
aiTw_ Y ) <i1t1.> (IV. 34)
aT 9
°P P /P op v/p

o’" o0
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aH
99 ] <2E>P+£<§£> (IV. 35)
9P P 90 fy P_\3P
°/T ,P_/P o/p o\/H

Equations (IV. 33) to (IV.35) have been evaluated for ¢ =1n T, S, and
In V differentiated with respect to In P o and In T o and are also given in

Table V.

Changes in In ¢ due to a change in initial conditions can be estimated by

using the first term in a Taylor's expansion; that is,

Alng=(21m@\amp +3_MA1nTO (IV. 36)
dln P © \olnT

Either correction or both may be used in (IV. 36).

In Table V, numerous expressions appear which involve groups of terms
such as PV/T or PV/ TCP. For ideal gases, the equation of state is given
by (IV.2), i.e., PV/T=nR. If H isgiven in cal/gm and Cp and S in
cal/gmoK as in Tables I to IV, then R = 1.98726 cal/mole®K. The volume
derivatives needed to evaluate the expressions in Table V are given in Tables
I to IV using the following notation: (9 InV/d In T)p is (DLV/DLT)P and
(dIn V/3 1n P)p is (DLV/DLP)T.

One numerical example will be given to illustrate use of these derivatives.
We will use the data in Table I which are for an isentropic process. The prob-
lem may be stated as follows: Starting with data for an initial point of P0 =
50 atm and T = 3636° K and a final point of P = latmand T = 2613°K,

calculate the temperature at P = 1 atm for an isentropic expansion from




1
P =25atmand T, =3636° K. This involves the derivative
(01In T/3 In PO)TO, p- Using the expression in Table V for equation (Iv. 30)
with ¢ =1n T and the data from Table I we obtain

31in T ) POV0 0 ln V0 _-nOR 8an0

alnP0

S T co\amT Co \0In T
o~P (o) P (o)
TO’ P Po PO
_ ~(0.06384)(1.98726)(1. 89599) _ _ o 12423
1.93619

From (IV.36), with In ¢ =In T and A In T0 =0,

AlnT=-({9InT Aln P = - 0.12423(-0. 69315) = + 0. 086110

2 In P0

T,, P

In T =1n 2613 + 0. 086110 = 7. 95435
T = 2848° K

The estimate of 2848° K compares fairly well with an accurately calcu-
lated value of 2820° K.
ITERATION AND CONVERGENCE
A discussion was given in Sections II and III of various computational
methods for obtaining chemical equilibrium compositions and the problems of
obtaining convergence in iterative calculations. With the exception of the
trivial case for which a closed form solution exists, each computational method

uses a set of iterative working equations. As a result, in order to insure con-
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vergence, each iterative method must be concerned with controlling the step
size of corrections and/or with obtaining good initial estimates.
In this section we will give an example to illustrate the iterative process
which starts with arbitrary initial estimates. For this purpose we have chosen

31-32 and which were

the method and program with which we are most familiar
used to obtain all of the numerical results given in the tables. This descent
method uses the Newton-Raphson iterative equations (III. 14) with atomic species
as components (or, for the case of ideal gases, the first part of equation (III. 27)
with N(O) and y(o) given by equations (III. 31) and (III. 32)). This method re-
quires no special initial estimates for composition (an arbitrary estimate is
used by the program) and no constraints on mass balance or equilibrium re-
lationships during iteration.,

The problem selected is the determination of the equilibrium composition
of a stoichiometric mixture of a hydrocarbon (CHz)x and elemental oxygen O,
at a temperature of 300° K and a combustion pressureof P=0,0latm, Wereal-
ize thatlittle chemical intuition is requiredto permit one to correctly assume that
the significant gaseous species resulting from this reaction would be CO2 and
H20. However, the point of this example is not to select the best method of
solution but rather to show that convergence is possible using arbitrary esti-
mates which may be very poor.

The course of the iteration will be indicated by two parameters: (1) the
function ¥ (equation (II. 12) with M taken as the unit matrix), and (2) the
free energy per gram of the mixture. For convenience we will call y the
error parameter, Inaddition, we Will discuss the step size control param-

eter A (equation (II. 13)).
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A brief discussion of the control factor A was given in Section II where
we pointed out that an optimum X could be obtained by minimizing . Fur-
ther, in Section III we indicated that an optimum X could also be determined
by the Gibbs free energy to which has been added one half the sum of the squares
of (I.7) and (I.41). However, for observing the course of iteration, G alone

is adequate. We use an empirically determined X such that

|ammn| <2 (V. 37)
A ln(ni/n) < 2 for ln(ni/n) > -18.5 (IV. 38)
A ln(ni/n) <-9.212 - ln(ni/n) for ln(ni/n) < -18.5 (Iv. 39)

For each iteration, the restrictions given by equations (IV. 37) and (IV. 38)
limit the number of moles n and the mole fraction of each currently signif-

icant species (ni/n >~ 10'8) to an increase < e2. Equation (IV. 39) limits

the mole fraction of each currently insignificant species (ni/h <~ 10'8)
from becoming larger than ~ 10'4. Restrictions of the type given by equa-
tions (IV.37) to (IV. 39) are necessary to control the overcorrecting which
might otherwise occur when the current estimate is far from the final solu-
tion.

The error parameter iy is composed of three terms which show the com-

bined error in mass balance, number of moles, and chemical potential

(Iv.40)
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The Gibbs free energy per gram of the current mixture at each iteration

is given by m 1
[/ "iti
_G .1 (IV.41)
DIMI E nlMi
i=1 i=1

where Mi is the molecular weight of the jth species.

For the first iteration, based on 1 gram of mixture, we will arbitrarily
assume n =1 and an equal mole fraction for each of 20 gaseous species (C,
CH, CH,, CH,, CH4, CO, CO,, C,, C, Hy, C2H4, Cy0, Cg, H, HCO, HO,,
Hy, Hy0, O, OH, and O,). In Table VI we show X, ¥, and G/ZnM, for
each iteration from 0 to 29. The zeroth iteration corresponds to the initial
estimate, The parameters iy and G/ EniMi are also given in figure 1.

The control factor A, which is given in Table VI, is necessary to prevent
divergence. It may be seen that A is less than 1 for the first four iterations
and also for the 14th through 18th iterations. I no control factor were used,
the corrections to compositions for some species would have been so large
that the numerical values would have exceeded the maximum size number
permitted by the computer (~ 1038). For those iterations where X < 1, the
particular species whose corrections determined A are shown in Table VI.
For this example the controlling species were COZ’ CoO, CH4 and HZO‘ How-
ever, for other problems or for this problem with other initial estimates, any
species might control A.

An initial control on step size (A < 1) might have been expected for the

first few iterations where composition, mass, and equilibrium relationships
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are far from their final values. However, once the full correction has been
applied (A =1 from iteration 5 to 13), it might seem surprising to see ex-
tremely tight controls on correction step size again being necessary (iter-
ations 14 to 18). The reason this occurs is that with poor initial estimates,
it is temporarily possible for one or more significant species to be made ex-
tremely small. This occurred in this example for H20. To compensate for
this small value of Ho0, the correction equations at iteration 14 called for
extremely large corrections which, if permitted, would have greatly over-
corrected HZO‘ The control factor A reduced these large corrections for
several iterations until the full correction could again be permitted.

The progress of the convergence may be followed in Table VI or in fig-
ure 1. It may be seen that for all iterations either y, G/z:niMi, or usually
both decreased. The small increase in y at the last iteration simply indi-
cates loss of numerical significance when convergence is essentially reached.
In the third iteration G/ Z)niMi increased. K a mass constraint were im-
posed in addition to controlling step sizes, the free energy would have moved
continuously toward a minimum. However, in a method such as the one that
is being used in this example, mass may vary at each iteration until con-
vergence is reached, and free energy does not necessarily move contin-
uously toward a minimum.

This can be visualized by considering a simple system composed of one
chemical element with gm-atoms b(i’ and two species with moles ny and
n, and having stoichiometric coefficients ayq and a9 respectively. If
mass is constrained during the iterative process, then, at any step in the

iteration
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o
If mass is permitted to vary, its value b1 is given by

Figure 2 is a sketch of free energy with contour lines representing lines
of constant Gibbs free energy. Also shown in figure 2 are a solid line and a
dashed line. The solid line is a plot of equation (IV.42), with mass constrained
at the value bcl). Starting at point A, for the first iteration, the free energy
decreases continuously to the solution at B. The dashed line indicates the
free energy which could result from an iteration with mass unconstrained.
Starting the first iteration at point C, the free energy reaches a temporary
minimum at D, increases to E, and then decreases again until finally the
dashed line approaches the line AB as the mass converges to bl'

The previous discussion of free energy is not intended to imply an ad-

vantage for constraining mass during iteration. On the contrary, as pointed

out in Section III, with mass constrained the calculations introduce mass bal-
ance errors that lead continuously to mass imbalance for which there is no
effective removal mechanism, Therefore it is a computational advantage
not to impose mass constraints, This may be accomplished by including the
terms (b‘i) - bi)‘in equation (III, 32),
The convergence example was given to indicate that convergence in

chemical equilibrium calculations is usually possible with a descent Newton-
Raphson method in spite of rather poor initial estimates. The fact that the

29 iterations were necessary to obtain convergence simply indicates that the
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initial estimates were quite poor, Typical problems, that appear more dif -
ficult to solve than the example problem, require considerably fewer iterations,
For instance, consider the results in Table III which are for a problem in-
volving 69 possible species, For the first point shown (T = 5000° K), for
which arbitrary estimates of composition were also used, 18 iterations were
required, Each of the remaining 9 points started with the solution to the
previous point for its initial estimate and required an average of 5,4 itera-
tions for convergence,
SUMMARY
The calculation of complex chemical equilibria is an interplay of thermo-
dynamic fundamentals and numerical analysis, In our review we have tried
to consider both aspects of the problem without placing undue emphasis on
either. Thus we have contrasted the two alternate, but equivalent, formu-
lations of the conditions of chemical equilbrium: first as a minimization of
the Gibbs free energy and second as a set of equilibrium constant relations,
Next we considered some of the different numerical techniques that could be
used in equilibrium computations and how some of these were implemented
by various people. Finally we looked at some applications of the calculated

results,



84

ACKNOWLEDGEMENTS
We extend our thanks and appreciation to Miss Holly Smith and Mrs.
Bonnie McBride for their assistance and cooperation during the preparation

of this paper.



85

REFERENCES

Callen, H. B., '"'Thermodynamics'', John Wiley and Sons, Inc., New York,

N. Y., 1960,

Fl.lfgge, S., ed., ""Handbuch Der Physik'!, Vol, 12, Thermodynamics of
Gases, Springer-Verlag, Berlin, 1958. |

Giles, R., '"Mathematical Foundations of Thermodynamics'', The Mac-
millan Co,, New York, N.Y., 1964,

Glasstone, S., '""Thermodynamics for Chemists'', D, Van Nostrand Co.,
Inc., Princeton, N.J., 1950,

Kirkwood, J. G, and Oppenheim, I., '"Chemical Thermodynamics'',
McGraw-Hill Book Co,, Inc., New York, N.Y., 1961,

Sage, B, H., '"Thermodynamics of Multicomponent Systems'', Reinhold
Publishing Corp., New York, N.Y., 1965,

Van Ness, H. C,, ''Classical Thermodynamics of Non-Electrolyte Solu-

tions'', The Macmillan Co., New York, N.Y., 1964,

’

Pitzer, K. S, and Brewer, L., '"Thermodynamics'!, second edition,

McGraw-Hill Book Co, Inc., New York, N,Y,, 1961,



10.
11.
12,

13.

14.

15.

16.

17.

18.

19.

20.

21,
22.

86
Wilson, A. H., ""Thermodynamics and Statistical Mechanics'', Cambridge
University Press, London, England, 1957,
Brinkley, S. R., J. Chem. Phys. }5, 563 (1946).
Dantzig, G. B. and DeHaven, J. C., J. Chem. Phys., 36, 2620 (1962).

Shapiro, N. Z. and Shapley, L. S., Rept. No. RM-4464-PR, The Rand
Corp., Santa Monica, Calif., July 1966. (Available from DDC as
AD-636605. )

Michels, H. H. and Schneiderman, S. B., in "'Kinetics, Equilibria, and
Performance of High Ter_gperature Systems'', G. S. Bahn, ed., Gordon
and Breach Science Publ.; Inc., New York, N.Y., 1963, p. 205.
Zeleznik, F. J. and Gordon, S., Can. J. Phys., 44, 877 (1966).

Stull, D. R., ""JANAF Thermochemical Tables', Clearinghouse, U.S.
Dept. Comm., Springfield, Va., Aug. 1965.

McBride, B. J. and Gordon, S., Tech. Note D- , Washinton, D.C.,
1967.

Householder, A. S., '"Principles of Numerical Analysis'', McGraw-
Hill Book Co. Inc., New York, N.Y., 1953,

Lohr, L. R. and Rall, L. B., MRC Tech. Summary Rept. No. 464,
Univ. of Wisconsin, Madison, Wisc., Mar. 1964. (Available from DDC
as AD-600736.)

Wolfe, P., Comm. ACM., 2, 12 (1959).

Bittner, L., Z. Angew. Math. Mech., 43, 111 (1963).

Tornheim, L., J. Assoc. Comput. Mach., /1&, 210 (1964).

Hildebrand, F. B., "'Introduction to Numerical Analysis'', McGraw-

Hill Book Co. Inc., New York, N.Y.,6 1956.



23.
24.

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.
35.

36.
37.

38.

87
Spang, H. A., SIAM Rev., 4, 343 (1962).
Davidon, W. C., AEC Report ANL-5990 (Rev.), Argonne National Lab.,
LemontIll,, Nov. 1959.

Fletcher, R. and Powell, M. J. D., Comput. J. 163 (1963/1964).

B
Barnes, J. G. P., Comput. J., 8, 66 (1965).
Broyden, C. G., Math. Comput. 19, 577 (1965).

Rosen, E. M., in '"Proceedings of 21st National Conference of ACM",
Thompson Book Co., Washington, D.C., 1966, pp 37-41.
Freudenstein, F. and Roth, B., J. Assoc. Comput. Mach., 10, 550
(1963).

Turner, L. R., Ann. New York Acad. Sci., 86, 817 (1960).

Zeleznik, F. J. and Gordon, S., Tech. Note D-1454, NASA , Washington,

D.C., Oct. 1962.

Gordon, S. and Zeleznik, F. J., Tech. Note D-1737, NASA | Washington,

D.C., Oct. 1963.

Erickson, W. D., Kemper, J. T. and Allison, D. O., Tech. Note D-3488,

NASA, Washington, D.C., Aug. 1966.

Traustel, S., V.D.I Zeit., 83, 688 (1944).

Huff, V. N. and Calvert, C. S., Tech. Note 1653, NACA, Washington,
D.C., July, 1948,

Donegan, A. J. and Farber, M., Jet Prop., 26, 164 (1956).

Martinez, J. S. and Elverum, G. W., Jr., Memo. No. 20-121, Jet
Prop. Lab., Calif. Inst. Tech., Pasadena, Calif., Dec. 1955.
Sachsel, G. F., Mantis, M. E. and Bell, J. C., in '"Third Symposium

on Combustion, Flame and Explosion Phenomena'', Williams and Wilkins

Co., Baltimore, Md., 1949, p. 620.



39.
40.

41.

42.

43,
44,

45.

46.

47.

48.

49.

50.

51.
52.

88
Goldwasser, S. R., Ind. Eng. Chem., 51, 595 (1959).

Crisman, P. A., Goldwasser, S. R. and Petrozzi, P. J., in
""Proceedings of the Propellant Conference'', Eng. Exp. Station,

Ohio State Univ., Columbus, Ohio, 1960, p. 293.

Villars, D. S., Rept. No. NOTS TP 2354, U. S. Naval Ordnance Test
Station, ChinaLake, Calif., Nov. 1959.

Villars, D. S., J. Phys. Chem., 63, 521 (1959).

Krieger, F. J. and White, W. B., J. Chem. Phys., 16, 358 (1948).

Hilsenrath, J., Klein, M., and Sumida, D. Y., in '"Thermodynamic and
Transport Properties of Gases, Liquids, and Solids'', ASME and McGraw-
Hill Book Co., Inc., New York, N.Y., 1959, p. 416.

Scully, D. B., Chem. Eng. Sci., 17, 977 (1962).

Wilkinson, J. H., '""The Algebraic Eigenvalue Problem', Clarendon Press,
Oxford, England, 1965.
Brinkley, S. R., J. Chem. Phys. 15, 107 (1947).

Brinkley, 8. R., in ""Kinetics, Equilibria and Performance of High
Temperature Systems, ' G. S. Bahn and E. E. Zukoski, eds., Butterworth,
Inc., Washington, D.C., 1960, p. 74.

Kandiner, H. J. and Brinkley, S. R., Ind. Eng. Chem., 42, 850 (1950).
Huff, V. N., Gordon, S. and Morrell, V., Tech. Rept. 1037, NACA,

Washington, D.C., 1951,
Boll, R. H., J. Chem. Phys. 34, 1108 (1961).
Browne, H. N., Williams, M. M. and Cruise, D. R., NAVWEPS Rept.

7043, U.S. Naval Ordnance Test Station, June 1960.



53.

54.

55.

56.

57.

98.

59.
60.

61.
62.

63.
64.

65.

89
Busch, C. W., Laderman, A. J. and Oppenheim, A. K., Rept. No.
SSL-TN-6, IER-64-12, Univ of California, Berkeley, Calif., Aug. 1964.
(Available from DDC as AD-607380.)
Chu, S. T., Jet. Prop. 28, 252 (1958).
Crampel, B., Barrere, S., Lemaitre, P. and Jaubert, J., Rep. No.
N. T. 90, Office National D'Etudes Et De Recherches Aerospatiales, 1965,
Gordon, S., Zeleznik, F. J. andHuff, V. N., Tech. Note D-132, Wash-
ington, D.C., Oct. 1959.
Hanzel, P. C., Rept. No. 30-3, Jet Prop. Lab., California Inst. of
Tech., Pasadena, Calif., Apr. 1959.
LeGrives, E. and Barrere, S., La Recherche Aeronautique, 68, 31 (1959).

Martin, F. J. and Yachter, M., Ind. Eng. Chem., /453, 2446 (1951).

McMahon, D. G. and Roback, R., in ''Kinetics, Equilibria, and Per-
formance of High Temperature Systems'', G. S. Bahn, and E. E. Zukoski,
eds,, Butterworth, Inc,, Washington, D.C., 1960, p.105.

Potter, R. L. and Vanderkulk, W., J. Chem. Phys., 32, 1304 (1960).

Vale, H. J., in "'Kinetics, Equilibria and Performance of High Tem-
perature Systems'', G. S. Bahn, ed., Gordon and Breach Science Publ.,
Inc., 1963, p. 271,

Weinberg, F. J., Proc. Roy. Soc., ser. A., 241, 132 (1957).

Wilkins, R. L., in ""Proceedings of the Propellant Conference'', Eng.
Exp. Station, Ohio State Univ., Columbus, Ohio, 1960, p. 315.
Winternitz, P. F., in ""Third Symposium on Combustion, Flame and
Explosion Phenomena'', Williams and Wilkins Co., Baltimore, Md.,

1949, p. 623.



66.

67.

68.

69.

70,

71,

12,

73.

4.

75.

76.

90
Mingle, J. O., Special Rept. No. 25, Kansas State Univ,, Aug. 1962,
Warga, J.,J. Soc. Indust. Appl. Math,, ;&, 594 (1963).
Cruise, D, R,, J. Phys. Chem,, 3&, 2620 (1962).

Zeleznik, F, J, and Gordon, S., Tech, Note D-473, NASA Washington,
D.C., Sept. 1960,

White, W,B,, Johnson, S. M. and Dantzig, G. B., J. Chem, Phys,
28, 751 (1958).

N\

Bowman, C. M. and Foy, R, H., Rept. No. AR-3S-61, Dow Chemical
Co., Midland, Mich., Aug. 1961.

Wiederkehr, R. R. V., Rept, No. AR-1S-60, Dow Chemical Co,,
Midland, Mich,., June 1960,

Core, T. C., Saunders, S, G, and McKittrick, -P. 8., in "'Kinetics,
Equilibria, and Performance of High Temperature Systems, '' G, S,
Bahn, ed., Gordon and Breach Science Publ,, Inc., New York, N.Y.,
1963, p. 243.

Levy, S. L. and Reynolds, O, A,, General Chemical Div,, Allied

Chemical Corp., Morristown, N.J., May 1960,

Marek, J. and Holub, R., Collect, Czech, Chem, Comm,, /23, 1085
(1964).

Bahn, G. S, and Zukoski, E, E., eds., ""Kinetics, Equilibria and
Performance of High Temperature Systems', Butterworth, Inc.,

Washington, D, C., 1960,



7.
78.
79.

80.

81.
82.
83.
84.

85.

86.

87.

88.

89.
90.

91
Levine, H. B., J. Chem. Phys., 36, 3049 (1962).

Boynton, F. P., J. Chem. Phys, /33, 1880 (1960).

Boynton, F. B., in "'Kinetics, Equilibria and Performance of High
Temperature Systems'', G. S. Bahn, ed., Gordon and Breach Science
Publ., Inc., New York, N.Y., 1963, p. 187.

Kubert, B. R. and Stephanou, S. E., in ''Kinetics, Equilibria, and
Performance of High Temperature Systems'', G. S. Bahn and E. E.
Zukoski, eds., Butterworth, Inc., Washington, D.C., 1960, p. 166.
Raju, B. N. and Krishnaswami, C. S., Indian J. Tech., 4, 99 (1966).

Naphtali, L. M., J. Chem. Phys., 31, 263 (1959).

Naphtali, L. M., Ind. Eng. Chem., 53, 387 (1961).

Snow, R. H., Rept. No. IITRI-C929-3, IIT Research Institute, Chicago,
Ill., Sept 1963.

Dobbins, T. O., Rept. No. WADC TR-59-757, Wright-Patterson AFB,
Ohio, Dec. 1959.

Storey, S. H. and Van Zeggeren, F., Can. J. Chem. Eng., 42, 54 (1964).

Hancock, J. H. and Motzkin, T. S., in "Kinetics, Equilibria, and Per-
formance of High Temperature Systems'', G. S. Bahn and E. E. Zukoski,
eds., Butterworth, Inc., Washington, D.C., 1960, p. 82.

Shapiro, N. Z. and Shapley, L. S.,J. Soc. Indust. Appl. Math., 13
353 (1965).

Svehla, R. A., Spec. Publ. 3011, NASA, Washington, D.C., 1964.

’

Zupnik, T. F., Nilson, E. N. and Sarli, J. J., Rept. No. UACRL-
C910096-11 (NASA CR-54042), United Aircraft Corp., East Hartford,
Conn., Sept 1964.



92
91, Gaydon, A, G, and Hurle, I, R,, '"The Shock Tube in High-Temperature
Chemical Physics'', Reinhold Publishing Corp., New York, N.Y., 1963,
92. Zeleznik, F. J. and Gordon, S., ARSJ., 32, 606 (1962),
93. Gordon, S, and Zeleznik, F, J., ARS J., 32, 1195 (1962),



15%0C°0
41.€0C°C
21000°0
€8€16 °0
Ct1110°0
coccceo
§40CC*0

1%661°C
1%s51°C
€°1€01

e1s61°1
ETEET" 1
16116°C
ccceost
CCCco°1-

§CSET°0
€ssl1°0
Y6101
6EESTT
6IG61°1
8EES6°0
(1e2C°1
2%2CcC*1-

¢68°L1
16%8°¢
6°€€22-
68€s0°C
SLYLLT
seel
€0s0°0
ccecoo1

11800 "0
68200 °0
6€000°0
$€¢96°C
68610°0
€0C00 "0
L€100°0

06291°0
n6¢91°0
6°¢801
66%61°1
66%61°1
11689 °0
00000 °1
c0000 * 1~

10621°0
11011°0
1°6501
6%1l€1°1
S8¢v1°1
GB8LS1°1
€SCH1°1
ZL%00"1-

6LL°L1
1648°¢
1°%80¢~
62660°0
92896
6602
Q0C1°0
00C *00s

1€600°0
€9600°0
€5000°0
8%666°0
81€20°0
00000°0
18100°0

1€291°0
1€291°0
0°L601
SLE6T1" 1
GLE6T T
0%069°0
00C00°1
00000° 1~

082Z21°0
S0901°0
0°6901
LGEeT"T
666€T1°1
1%0¢ee°1
6%991°1
99500° 1~

GEL®LT
19%8 °¢
0°1c02~
6€960°0
26561
0s1¢
0621°0
gce 00y

92L10°0
Lev20°0
12200°0
85206°0
€29%0°0
000000
9€900°0

S¥091°0
Ss%091°0
L7€8 11
111611
TT161°1
99212°0
00000°1
00000°1 -

66811°0
€L6R0°0
9°LHTIT
096T11°1
SGHET T
§990L°1
ogsvee°t
9ee10°1 -

6LE°L1
16%8°¢
»*69971 -
¥6160°0
612¢€2
€sHhe
000s°0
cooent

06120°0
06€€0° 0
Z29€00°0
62118°0
84660°0
100970°0
18600°0

6€09T1°0
6€091°0
82221
€0l61°T
ENT6TT
Y6122°0
00000°1
00000°1-

L602T1°0
€8680°0
26811
21111
29111
6T9¢€6°1
STIGEY°T
2Z810° 1~

291°L1
1sv8°¢€
2°L9%1-
LZ2850°0
26%21
€192
oon*1
0no*0s

81€20°0 64%20°0
€2LEQ . 691%C°OC
L1500°0 €6%00°0
21098°0 289%8°0
29¢€90°0 L6890°0
9nn0*n  10000°0
L10110°0 0RZ1IN*C

9%091°0 29091°0
940910 29091°n
£°2%21 €°1921
YTT6T°T 9€T61°1
YIT6T*T  S€161°1
Y1l921°0 €£282L°0
00000°*T 00000"T
000C0°1- CONCC*1-

81221°*0 66€21°0
66%80°N  G14HQ0°0
0°€021 Z2°1221
9691T°T 2Z8911°1
BI6ET°T €ST4H1°1
12900°2 61€60°2
LI99%°1T  4$6606°T
06610°1- €1220°1-

880°L 1 C66°91
16%8°¢ LE34: 08
6°86ET- 4°80€1-
26860°C 9886C°N

0£201 106L
€992 ez12
nez°1 199°1

030°CH coo*ne

%0 50 + g

81G20°C 96620°0
19%4%0°0 gz284n*nN
S%GC0°0  21900°0
GRLEB"Q 21928°0
SEZLN®N  6%9LN°0
T0CCC*0  INCCO*N
S6ET0°0  Z246T0°0

CLLSTTO  GENST*N
SL0%91°0C G609T°N
s°elcl c* 8821
SGT6T°T  ZRT6T°T
GGT6T°*T 28161°1
LE0EL°D  H625L1°D
coccost  cccentt
ccecee 1~ CceCccot1-

226210 16G21°n
91€80°0 0O%¥€80°C
6°2¢21 G°LH71
9R9TTI*T 90211°1
TZEHT*T  $496%1°1
609%1°2 %€802°7
€60¢c°T 8T166°1
66£20°T- 1H620°1-

926°91 9%g8°91
1s%8°¢ T690°¢
1°6%21- 7°9171-
g06G60°C  9e66N*0

9119 cocs
1212 £287
cceez cngee

nceese cecceoe

:gquBq0BIY

L€0E0 °N
82099 °0
LHRQ0°N
82161 °0
12680 *n
2ngen n
9g0z0o*n

LLTI9T1°0
2219T1°
T°2€¢1
REZ6T*T
R6261°1
26042 0
noonn * 1
0NNoo * 1-

AU A Bl
sasgn -t
L9671
oHgT1°1
SHeEGT* T
|agrRe
L6 TGO T
270 T~

066°91
TeHe g
R°O€6-
820000
RG6 7
0662
nnecg
noncol

€LPE0°0 (932N
€26n1°n (DYTHTIN
RERIN°0 (9110
8G6199°0 (ayrnzH
ST6721°N (9)17H
€10n0*0 (9)2NTH
nznLnen (9)TH

SNOTIIVYNL 370w

9¢00T°*Nn VURYO/ (T -VYWWV D)
9¢9971 *N Std/170)
91767 33S/W 'V ¢73A anNnes
9GeaT"T S{OHMTIN/AIN Y E(SIVWANY D
966611 AN/ dD Y WWYO
16222 °*n a9/ 44D
nnooo 1 4(170/7A10)
nonnne Y- 1dI0/A70)
(PINLIYTW

OSNTEIAPINNDNY CAAT VAT NI

ROLGT *N VRWY O/ (T =YWWYD )
oerenen S{an/ 1000}
R°OLHT IS/ W 'y $12A ONNQOS
966711 S{OHNTO/JTIN) LS IVIHYS
RT16PT 1 AT/ AN Y HEWYO
6RE7LZ a7 44)
AEGEAR T A(10/A10)
cHZ26n 1~ 1td40/A70)
(3ENLIYIW

ANTLIVIAN) SIATIVATIMAN
G99°GT IV W 4w
1699 °¢ (¥ D ¢<
nen 9/ ‘*u
LRCAN *N aye3IINK N
15:23 nN/30 A
9c9g ¥ 930 i
no*ng Wiy *d
noney d/0d

NOILISOJHOD WATHAITTINDE HNIWNASSY SSHOOMd OIJOMINESI NY 804 SHIIMIJONd DINYNACOWMIHI - T FIGVL

- LS6E-H



[AR P2 A
s €Sl
SEEEZ" 1
€0966°0
cccec 1
ccccee1-

§66°¢61
11%9°¢L
1°9¢81-
$6€50°C
C0l1c0¢
s8¢
cosc*o
¢cceccot

26%12°0
¢°l611

SLEL2°1
62C65°0
00ceo -t

$96°61
11%9°L
FREAT A &
$8€50°0
056601
8911
0001°0

86199°0 (9)T1CZH
60212°0 0€961°0 €9681°0
FREArA €921 2°80¢1
81692°1T 62ZH%Z°1 00%¢€2°1
Y1865°0 629%9°0 86899°0
00000°T 0C000°T 00000°Y
00CCO°*1- 00000°*1~ 00000°1T~- NNOOO°T~

699°61 §99°G1 699°G61
1149 °2L 11%9°L 11%9°L
2°60LT1- T1°%9%1- R°*€l€l-
$8€90°0 %8€90°0 HBE90°0
L0106 09162 9389¢1
%021 L6461 9281
0s21°0 0006°0 000°1
000°00% C0Q0°00T NNO°NS

000°00¢%

€L8€0°0 (9yen €26n1°n (9 THI0 [ERTINN (910
s1621°0 {(9)7H €1n00°0 () 2NTH nzaknen (O)TH
SNOTIVYHY 10K

INIOd 1S¥I4 3HE 40 NNILISNAW0ND WNATMEITINDZ 3HL iy 03IXTd NOTIISNdWAD»

99281°0 %2681°0 6L€81°C Q0OZ281°0 621LT°0 9¢9971°N YRWVA/ (T =YWV D)
T1°61¢1 Zeeeel €°Zvel hoecel £ ceRet 9°12¢T 73S/L fv 473aIA ONNNS
10T1€2°T 9€L22*T1T LT1627°1 19277°1 0GSI2°1 OQCeeT1°T A/ 4D Y MY
109190  28%89°0 9ZN€9°*NH  €12969°0 €6GT1 0  1G29)°N o/ 44D
00000°T €NO0O°T CCCCO"T CCOCO°T 0NON0°T 0Nnno°*T d(10/A10)

00000°1- COCOO°T1- CONCN*T- CNCCO°T1- NONDO° T- NNNON°T- ttdla/01)

(DNLX TR
ANTLOVIMMONY STIAT JYATHIC

G99°51 G96° 61 ¢e9°G1 G96°¢1 6G9°*c1 609°G1 Iv 0w W
11492 1149} 11%6°2 1159, T1%9°*¢ 16HR ¢ (YW DY/v) ¢S
0°192T- 9°6811- €°2%11- €°78N1- O°fliR~ nen S/ A
HB8€90°0 HREGQ®0 HEEGCO*C HREGO*N  HQEoN N  HREON*N a7 Ny 4w
09111 9168 1622 G166 €E1e 18¢ a0 A
$061 6002 |21n2 Lk 16462 Qca¢ ¥ o730 ¢}
067°1 199°1 (A A a4 cnge? anntg RIaRd ¢ WiV *d
000 0% Cc00°nNg 0oce6e ceeene ang*0t ocone1 d/0d
%0 g0 + %H :sjuejoesy

NOILLISOdWOD ,ddXId DNIWASSY SSHDOHd OIJOHINHSI NV HOJd SHTIIMAIOHI JIWVNACOWMIHL - "I FIdVL

. LSec-H



S)14T101IN
(9)INTITY
12)2k¢3
(Q)}2HTD

(SH1TIT0TN

<) 1021

(€)rz422

() IKT2D

SNOILICNTZ O3
*0
*0
‘0
*0
*0
*0
‘0
ezéeeo
cocoo o
‘0
22z2z°0
2zeeeto

min

22¢22°0
00000°0
*0
‘0

6€4%2°0
6€E4%2"°0
£ceey
€veE2e"1
gvecet
s1922°0
00C00°1
00CCO*1-

6€4%2°0
6E9%2°0
€°2¢y
AAATARA
huecel
%1642°0
00co0°1
00C00°1-

S¥4°62
se6L1
S LvL -
$6€€0°0
[1-329
00¢
2061

toiyezn {ortnem 19 H5HCN (911328 (o) T420IM (N17I7nTN {9¥7nIN
(CIERTN {91ZHIN {2 1E4IN (°) 24N (D) T4IN () INTOTH (" 274 {(0)72n7 4
(M1 (9e41 710 (914172 (S)INTOTD (mMen {(y1pz- (N )372n>9 (N1H79
{122 (91241012 {9)1141010 {tM7I21n712 (4) 1121012 (eyzers {N)hp1y ()edTn
(814312 (91310 (012319 (") 1410 (9143717 (NeEIN T {o171910 LIS B e ia b el
NEISSY Ty M4 S00I00° NvHL SSIT InIv SNOTLIVHY JION JSOHM INE CINICISANND Inam HITHM S1anensd Iwael | TInny
°0  €0000°C 981D0°0 6TI910°C 2€0%0°0 GILEN*C (Z%TN*n  afeNnen  gennnen torzn
°0  T0000°0 €6000°0 89TT0°0 CPES0*0 ZHECO"N  2RHENN  24T110°N  €7¢ANn"nD {91HIN
‘0 NN00J*0  €£7002°0 E€BTIONTC NOZ2P°0 24560~ £26/T°0n  19(N7*0  Q9on7*n (91
TITIT*0 ROTII°0  T€O0TTI°0 61S0T°0 96T40°N €SEIN°C  9GREGON  26£6n°A  pGabnen [kt
"0 10000°9 62000°C GHZ0I*N  HH 000 99CT0°0  TLONA*N  6€GANTA  TEFNAP*N (MINTN
*n °0 *C00NNNer AN0NDcN  TOCCOTH Z00NNTA CANNN A KAONN A tOITHIN
‘0 0 *0 000GCT0D CODCC*N  GOOCC*D  €90NN*A 119700 °n 97300 *A" (O)TN
722220 0€2727°0 1HZ7ZTN  LEZUZ*0  HZGSTSN PEHCNTC  [HGAN0  A4N00 N HNANACA (9)107H
00000°0 £O0CD*D 6%100°0 B6E60N"C QIGFN"0  C1HGN"N  GHTIFN*N  9gTIN"A  GAFNO0*N (a)2u
*0 ‘0 000072°0  0ONO0*0  T0000*0  10NCO*NH  £ONCO°N  AAPON™A  ~DO0O Y (912NTH
22222°0 L1Z2Z2°0 0602Z°0 T1212°0 Q0€N6T*0 NEZGIN  £RLAT™N  196%0°N  £9GTA*0 (SRR ERL]
222220 H1122*0 %AEIZ°0 E€€O0PT*N  HZ1Z21°0 HRAGO*C 9LAIN"Q0  126nNn°*n  ¢aInney tM1TMTE
*0 ‘0 0 9N000°N  0NNON*Q  TCCCN*C  INDANTN  AnNNON*N  ANO00D *N tNTNIITH
‘0 N0000CN  90070%0 0G200°N #4670°0 EHIFTC E£T1TRZ°M €6Q9¢°*N  GT1?NH*N (3T
*4  0001°C*0 000000 Z1000°0 ©00INA°N  RYGAN*D  E6E20°0D %490 °" 971260°7 (IR A ]
N0N00®°0 $1N00°0 8ONNO°O 6000270  gANLACL D Zonceen 1MCN0°0  NNdAN N NRNNacn t937710
‘0 ONONDTO NOON0TN G000G*N €TANAN®N  GINCO°0  6NFONTO HANNN*A ZnAON*n (AR 2 1) M bo]
NACON®0  €£000°0 6L900°N RAZZFO*N  EREG0T  GLRED*C  TNNTI*D  [eRAT*N  6T19nT*) [RAR A o]
22222°0 1612270 2Z¥HIZ2°0C 0GSOT°0 SLZI0°0 H%LT0°N $060N°0  GGONADN  £10NN*0 [ Fadal v}
N0000°0 12ZN0N0°0 B8%920°N E€€1%0°C TORIT*0  HE€CHT 0 €8962T1°N  RGETT*A  NIINT*N 9)1n1)
°n ‘0 My 0 ‘0 N CNCONTe NANNGQ T TONANeN (9)1INTD
0 ‘0 *0 *n M N CNNENTN  ANANC N annpntn (119
SNOTEYYNY 30w
H4612°0 80R6T1°0 9T16BT°0 Z2LCET*0 HRBCZT0 21RHZ*Q Q07N NQIZ€°N 1265 N YWY/ (T -FWwhva )
Y4#S12°0 80B61°D 91681°0 22061°0 HRENZ*0  LTIRHZ2°C  £NY6Z°N NQI2E°N & 2he=n Stdins1a)y
6665 8*92L 0°L¢8 £°4956 T1°6T11Y 9T 09F T 2°fo97 281671 H°6N017 J3IS/K tv PIIA amMNNS
09422°T 00L%2°T S2€E€Z"1 99GE7°T 96€9Z°1 PQONEF T ounZ4*1 7271841 p+&17c*Y SUrHYAC/ATN TSIV WP
09%L2°T 00L%2°1 5ZE€Z°1 99GEZ°1 9€6E€AZ°T RNNEF*T  CHN7H°T 722184 °T [%176°1 AN AD ey o
SZETE0  6L0%€°0 T68GE°0 RKHEFEN  1Z2GLF°N T0EREC FIE6F*0 EDINH*N  7pGNH 0 a/wy 40
000001 00000°T ©0N000°Y 00N00°T 00NON®T  CCARCO*T  CNONO*T NAMIN° T noNnne*Y A(10/A70)
00000°1- 00N00°T- 0NANO°T- 00000°T~ CONCO*I- CAFCO*T- CAPON*T— OACNO*T— NONON*T - a0
(IMNLX TR
ONTLIPIRNAONY SIATIVAIHIAC
ZHST12°0  11%61°0 169ST°0D 06221°C T62%T°C 4%99¢1°C GRATIZ*N  41inZe°N 0Q0ZZ7°n YRWYA/ LT ~TWRen }
2H612°0  €2%61°N REBYTI"0 6TL60°N Z%TR0°0 BRLESD*0  6RELNN E9E7T*N  76691°N Stdal/1ny
6°66% £°622 troze Z2°C16 6°1601 R*RGZ1 L*6161 1r120n 0°T1AT 23S/k fY A aMnNOS
16%22°T 8LI%2°1 BLEBT"T QHTIET°1 LREZT°T 9%8ET1°T G9GGTI°T LfI6T°T NYHGZ°t SINHETO/4TI0 TSIV WWY S
LS%22°1 8BI%Z°T  TT98T1°T 999%1°1 BGELTI*T L1%%2°1 S€I1S2*T 12207°1 44987°1 A/ AT Y e
62ETE°0  9SRYED  RLY8Y°0 88996°0 06SZR*T O99T16°2 GGH10*7 OQLORP*T »260T"1 a/Mmy td)
00N00°T  9RZNO*T  HS6G9°T TIEEE T 96968°T L€9SG°7 GAGAZ*Z SHNLL*T £90He°T d{£70/7A0 )
00000° 1~ ROJ00°T- L6100°T~ THETO*T- €£2450°T— BEFHN"T- OZIRN"T— 9TIHCN°T- NEGzN*"T- 140700
(FNLIXIW
ONTIIVIN) SIATLIVAIHIN
9H4 *62 O%% 62 1212°62 202°82 16€°62 806°07 /10 el H21°61 HRZ*H1 ¥ 0N ‘W
1966°1 €621°27 CA% TAdd 166¢€°2 HZH9 2 FENNTE onnye¢ enloce thZetf (MYI9) /v <
86651~ 0°GEHT- R°GEZT- 9°0ER- 9107~ 1°68¢ He18%2 ATEHGE 1°%7¢4 a7y *H
96€€0°0 L6EE0*0 9STHED*D 9%GEN°0 H%6£0°0 FRIHNC  SGEGO°N  ZT1990°*n  1n0zN*n N/<S30KW N
L8112 181% L09¢ Y122 80L& FAFAA 02?261 EALA T4 S7LRZ a2 ‘A
[eLoleh § 00s1 2002 00s? rone cnge cco* nney 00Gg ¥ a3a )
000°1 001 000°1 000°1 0001 oee*t noe*t nenctT1 anne1 WiV ‘d
49010 + 2NSH%) :sjumgoeay
ANSSEYd ANV SEUAIVHIIWIL QINDISSY IV SHTINIIOMd WATHAITIN®T OIWVNAQOWMIHL - ‘III TIDYL



SNOT1ICNOD G3NSISSVY T1v ¥03 g00000°

902CC*C %08Q0°C 1T1€20°0 G.6%0°0
86CCC*0 62¢CC*C %9610°0 +9160°0
20CCC*C %€000°0 61¢00°0 %6810°0
922€6€°C €%966°0 ¢6888°0 H%501°0D
L6%C(°C 1€810°C <C€€SO0°0 62%11°0
21CCC°C €S10C0°0 28110°0 €6650°0
YEELI®( 8%6ST1°0 8%691°0 486L1°0
Y6EL1°C 8%6S1°0 8%691°0 ¥%86LT1°0
L*9%¢ 1°6G001 14101 T°68T1
LSCTIZ2°T SCHC2Z°1 S0%02°1 12612°1
LSCIZ°1 SC%C2°1 S0%02*1 L2612°1
€8S€9°( €98S5°0 H619°C 9500L°0
CCCCC*T cCccc*1 00COO°T 00000°1
€CCCC 1~ cCcCcco*1- 000CO°1- 0COCO°1-
CLCST*C €v€11°0 10%01°0 L16221°0
82GHT1°C $64%01°0 %1690°0 91€50°0
€ eee €°sle €£°8201 8°1211
CHILT°T GLCET°T 6%260°1 81680°1
9HL2T1*1 29GET1°T 8OGIT°T %H194%1°1
60662°C €1s22°1 12%0S°C 19820°9
28%€C°T GE€2%1°1 69916°1 Glievs*2
C6CCC T~ Te%CO° 1~ 16S10°1- €1960°1-
696°L1 $08°L1 662°L1 €LL°61
Y€1 S TAS ] YheEh Yy 118°%
CT6E%¢~ B8°6672- H°4%61- €°8%11~
6666C°( L16SC°C %61S0°0 0%€90°0
CC690tL £2469628 BZ€6066 8BZGHHIT
ccot CcCcse1 0ocCc¢ 00¢2¢e
crccec cicos¢ 01C0°0 0100°0

HHASSHYd ANV

. LGS6Z-H

NYHL SS37 3¥3IM SNOT1OVM4 310w

66€10°0 %6T190°0 #€920°0 26.100°0 ¢6€7220°7 11000°N gznoo°n
6%680°0  649€€0°0 0Z6EDN°C ZHETN°C  C9%CO°N  221C0°0 110900
0T#20°0 L6TIB8T°0 €R89LZ°C SH91€°0 1182¢°N 8Gl1€€*n 9g7ce*n
KBELKE 0 €T201°0 H€210°C #0TIN0*0 JICCO°0 17000°0C 000nnn*n
01S91°0 26621°0 26290°0C 18910°0 96GC0°C $0ZM0°C  €RONO D
YHE€02°0 9HGEHTN  REZ6G°0  9EHHIC0  276G9°C  6BEGG°L  265Q9°n
08YT2°0 8LRBI®D 6G8GE°C 6YIRECO 9GHEED GlI96E*N 6TLRE*N
08%12°0 81882°0 6S8SE°0 6HGRE"0 OCHEE*0  GIG6E*C 6T116F°0
1°%191 €°EH8T Y6622 2°1s¢g? 2°8897 Z°LRL2 62127
6GELZ°T  H090%°1 L06GG"1 16629°T (CLTG9°1 T21%6°1 6fgGa°*Y
9SELZ°T %090%°1T L06SS°1 16629°1 C2I169°T 1i169°T1T 688G9°1
Y6L2L°0 22691.°0 £t2.08°0 60¢28°0 L1828°C L2P€R°0 €97¢Rr*N
00000°T 00000°T 00000°T (€00CO°Y C€GCCO°T 0£O0CO*T 00000°T
00000°1- 00000°1- 00000°T—~ CONOO*T- COFCC*T~ CCORN*T1- 00NNO°T-
RGLOET*0 966%2°0 GG961°0 €£OLTI°0 CL622°0 CISNE"N 160G °D
LE6%0°0 88290°0 89990°0 6ZL0T°0 [RCET*Q  GI9Q7Z°*N gQElHhe N
%°90€T1 9°8291 1°8%61 9°1912 G*89¢7 £°7667 z*aLLze
68980°T 66160°T TO6TT°T 22041°1 127282°1 99%¢H*T +¢166°1
€29%2°T 6192€°T »9%%2°T 9I412°T1 02862°1 €ITH%*T Q14 T
9T19€S°HT1 €£€219°¢€7 21S€Z°H»1 HRT90°C €RGRO*Z GNLEZ"T 18116°0
12586°% T19029°S 6L812°t 6990L°1T 8QfRTIZ°T SG%10°1 2¢r720°*1

T99%T°T1- 1€802° 1~ 922T1°1- 9GLE0° T~ Z#21C T~ T6%20°T- ZRINO*T~

601°21 9%6° 9 G98°9 L%2°9 280*¢ €€0*g 91n*9
2669 °S oLyZ°L 1e4.°8 %9¢°*6 T9LG°6 CZLs*6 (A1 F
9°¢08 6°€6LY 2°6188 g*e6nant R*79211 2°81CTT 6°%6LT11
f9RL0°0 BLITTI®D L9SHT°Q RNCIT*0 ¢HHSI*C QLGGTI*N 72991°*)
196G6HGT B8BLIBHYRET €L969%CE 62LL0%6E 2ZH1IITEY LY Ieb720H €2072NT16+H
00+2 0092 0082 000¢ ceze cCHe oco¢
nInNo°o n0100°0 0o100°C L) fateRdo] g1ceeen [0h Salalda] n10D°*n
20 g0 + %4 :squB3OBOY

SHUNLVUAINAL TEANDISSY LV SETIYHJONd WATHIITINDH OIWYNAGOWHIHL -

(912014

ASOHM 1N CAYIOISNQOD MMIM RITHM S1INANYd TYNIT L IAoY

110000 {ayzoe
2¢0n0°n (OYTHTIO
SgNgeeEN ()10
100N A () T1NZH
LEQNN A (9)IZH
619099 ()1
SNOTEIOVYY JINK
7201660 VRIY O/ (T =Y WY )
?NLRE D ctdla/11a)
12662 73S/W 4y A ONNDS
7H8Ga "1 SEOHYIO/dT0) S (S IV WWYD
7hQca AT/ dD Y WRYS
yRZE] N a/ WD 44
nannn 1 A1 /A79)
20nnn*1- Ltd10/7A10)
(I¥NLXTW
ONFLIIVINNCN) SIATEVATHIN
LANYERD) VRWWYC/(T-YWWYO }
66GLE"D Stdnz1ny
1°0162 J3AS/wW Yy 4T13A ONNOS
26019°1 SICHNTIC/d 0 ) SLSIV WRYD
12210°1 AN/ dD ‘Y WWYO
Qr0N6HQH a/ WY 4D
SR 1107 d( 170/ A0 )
nenpnntT- 1{d470/A730)
(3¥NLXTW
ANTLIVIN) S2ATIVATHIQ
nin°o IM 0K W
14826 [ RERE Vin\ As LA
208611 a/WI *H
6£9GT *N RN AN
EEEERRTS a3 *A
falel-1 ¥ 930 4}
2100 *n WLV *d
AT FIdVL




T oy 1

T m |
e S _, « ; . “
drwe 1, [%Lure 1w dyla g ure Yop ue I mﬂssmv 190 |
4 vl -1 , | \ o1 A
| e Rt /o> ue | o>omH \Aue) \%pure | %%f \AWE °1%o)!
N o ro - H.
1 : m\o,ﬁ - m/ :’ 1 d o5 up m 1 i ssasoxd
—-| | - 1 -1 S o S | oud[eyjuas]
Ad . \aure) ) °a% | \awme: )°2% °1°(do)
- 4, ) ro 3 .ﬂ
t 4 ' m ,,, m / ,.
W\a we 9 _. lruwe. |19 \oa we, | 190 1% i
- 1! - -1 __ | - o Ly
| AULe | Ad L \°A ur e/ | °A°a | \’Awe/ %% °1%d)
_ (6e°AD) 'b@ (€€ Al b3 (vS "AD) bF
m : . o
| dure) . dpu mvmos . °Lure mA,H. u ¢, °rdo LU mv °1L ue\ 90°%L mAa u mv o)
m : \ ; - - AUl
Aure, " \Aute) Ad Opume) \AWE 0% Avre \o, /0 0 Avie/od,
(o} o]
Am\o o dso o ssaooad
/L ure\ °r Lue\ ‘1 0q
Ad + 55 - ol oo - L (D) H ordoxjuasy
A ure/ 1°A°% A ute/ 1°A°%
(o] (o]
_ a d
M mﬂ we dor  opw m/mooe 1 ure\9o°L ay Pag)
h * - — - o/%do L uT
Aue) Ad /o> ut ¢/ A °%a %Aume/°°
‘ (ze"AD bz . (08 "AD 'ba (18°AD "ba
m\Og .OrH.\O mnO-H.O AH\O& 0 o
/°g ur e d ut e 1ue |
/ de de e

SSHD0Ud FHL J0 DNINNIDAE LV TIONVHO OL ANd SSTO0Ud V 40
UNH LV LOJJAd ONILLVINLLSH HOJd SHAILLVAIMEQ LSHId DINVNAQOWHHIHL - “A ATV

Z-f{;g'—]



TABLE VI. - CONTROL FACTOR AND ERROR PARAMETERS
DURING ITERATION FOR CH, + 1.5 0, AT
T =300°K and P = 0.01 atm.

Iteration | Control
number | factor,
A
0 leceeeaao
1 |0.00959
2 03575
3 30119
4 . 59375
5 1.0 i
6 1.0
7 1.0
8 1.0
9 .o §
10 1.0 |
11 1.0
12 1.0 |
13 1.0 Q
14 | .00019%
15 . 00040 |
16 . 00294 ;
17 . 02193 |
18 | .17426 |
19 1.0 |}
20 |1.0 %
21 (1.0 |
22 |1.0 |
23 {1.0
24 |1.0
25 (1.0
26  11.0
27 1.0 |
28 1.0 §
29 {1.0 |

Species and

equation number

determining A

Error
parameter,

(eq.(¥§.40»

1 ——

Co,, (V.
CO,, (IV.
co, (V.
CH,, (V.

38)
38)
38)
38)

av.
H,O, (IV.
av.
Iv.
(Iv.

39)
38)
38)
38)
38)

. 55x10°
. 53x10°
.43x108
. 22x10°
.g7x10%
.a1x10!
. 24x10°
.46x10°
. 04x109
.70x10°
. 46x10°
_72x10°
. 01x10°
_21x10°1
.14><10O
. 14x10°
.13x10°
. 08x10°

i -2502

B L

Giﬁ)S free
energy,
G/zZnM;,

cal/g

oo 1o v s arn. ot s marcad

+1185
- 157
- 1818
-1430
- 1439
-1510
- 1550
- 1605
- 1699
-1874
-2101
- 2308
- 2460
- 2502

- 2502
-2504
- 2517

_08x10-!
o1x1074
.82x107°
. 38x107°
58x10™"
.60x10"8
_04x10-8
54x10~2
.61x10-10
.13x10~ 11
. 57x10711

- 2614
- 2879
- 2968
- 3006
- 3012 }
-3014.
- 3014.
- 3015.
- 3015.
- 3015.
- 3015.
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179
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O Error parameter, Iogm '}
O Gibbs free energy, G
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Error parameter, logyy ¢
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Figure 1. - Rate of convergence for (CHpl, +<§_X> 0,.

Gy> 69> 63> Gg> Gy
(Lines of constant Gibbs free energy)

|

b}
a

Gibbs free energy, G, callg

bi/alz n2
Figure 2. - Sketch of two possible paths of convergence.
Line AB (ayjny + ajon, = by): Mass constrained.
Curve CDEB: Mass unconstrained,
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